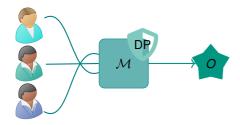


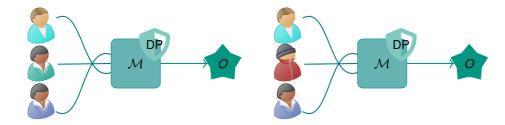
Analysis and Measurement of Attack Resilience of Differential Privacy

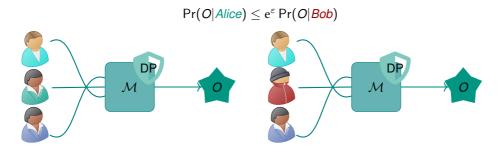
Workshop on Privacy in the Electronic Society 2024 (WPES2024)

Patricia Guerra-Balboa, Annika Sauer, Thorsten Strufe | 14th October 2024

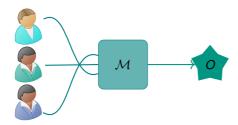


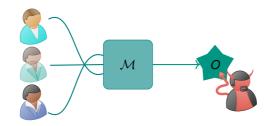
Differential Privacy (Bounded)



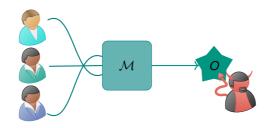


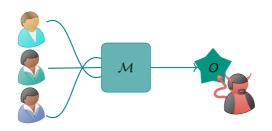
- More $\varepsilon \Rightarrow$ more indistinguishability & less utility
- How can we choose ε to mitigate the attacks?



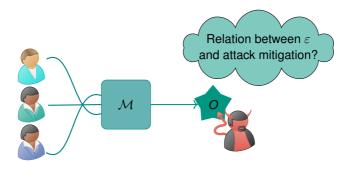


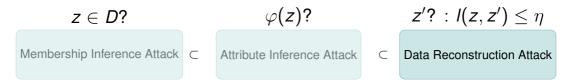
$$z\in D$$
?





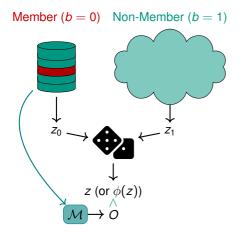
z'?: $I(z, z') \leq \eta$ $\varphi(z)$? $z \in D$? Membership Inference Attack ⊂ Attribute Inference Attack **Data Reconstruction Attack**





Adversarial bounds until now

Membership & Attribute Advantage



Given that $\theta \sim \mathcal{M}(D)$ and $D \sim \pi^n$, then:

Membership Advantage (Adv_{MIA})

$$Pr(A(\theta) = 0|b = 0) - Pr(A(\theta) = 0|b = 1)$$

Attribute Advantage (Adv_{A/A})

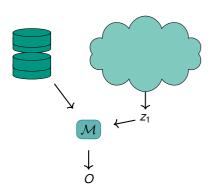
$$\Pr(A(\theta) = \varphi(z)|b = 0) - \Pr(A(\theta) = \varphi(z)|b = 1)$$

Existing bounds (Humphries et al.):

MIA	AIA
$\mathrm{Adv}_{\mathrm{MIA}}^{s} \leq rac{\mathrm{e}^{arepsilon} - 1}{\mathrm{e}^{arepsilon} + 1}$	×

Adversarial bounds until now

Reconstruction robustness



Reconstruction Robustness $((\eta, \gamma)$ -ReRo)

$$\Pr_{\substack{Z \sim \pi \\ \theta \sim \mathcal{M}(D_Z)}} [I(Z, A(\theta)) \leq \eta] \leq \gamma.$$

Existing bound (Balle et al.):

$$\gamma = \kappa_{\pi,l}(\eta) e^{\varepsilon}$$

Where
$$\kappa_{\pi,I}(\eta) = \sup_{z' \in \mathcal{Z}} \Pr_{Z \sim \pi}[I(Z,z') \leq \eta]$$

5/15

Q1: Can we find tighter bounds?

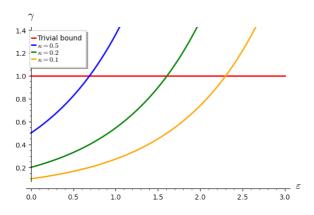


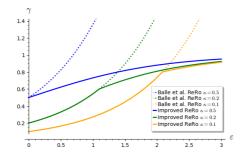
Figure: Balle et al. bound for ReRo

A1: Our Improved bound for Perfect Reconstruction Robustness

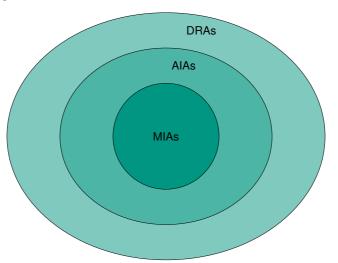
Improved Bound for ReRo against perfect reconstruction

If a mechanism $\mathcal{M}: \mathcal{Z}^n \to \Theta$ satisfies ε -DP, then it also satisfies $(0,\gamma)$ -ReRo with

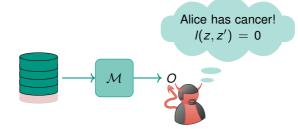
$$\gamma \leq \min\{\kappa_0 \mathrm{e}^\varepsilon, \kappa_0 \left(1 + (m-1)\frac{\mathrm{e}^\varepsilon - 1}{\mathrm{e}^\varepsilon + 1}\right)\}$$



Q2: Can we ReRo as general attack performance metric that allows comparison?



A successful reconstruction $\not\Rightarrow$ Privacy Leakage



Unbiased Reconstruction Robustness (U-ReRo)

A randomized learning mechanism $\mathcal{M}\colon \mathcal{Z}^n \to \Theta$ is (η, γ) -U-ReRo, with respect to π and I if for any dataset $D \in \mathcal{Z}^{n-1}$ and any reconstruction attack $A \colon \Theta \to \mathcal{Z}$ we have

$$\Pr_{\substack{Z \sim \pi \\ \theta \sim \mathcal{M}(D_Z)}} [I(Z, A(\theta)) \leq \eta] - \mathbb{E}_{Z_0 \sim \pi} \left(\Pr_{\substack{Z \sim \pi \\ \theta \sim \mathcal{M}(D_{Z_0})}} [I(Z, A(\theta)) \leq \eta] \right) \leq \gamma.$$

$Adv_{AIA} \Leftrightarrow U$ -ReRo

$$\mathcal{M}$$
 is $(0, \gamma)$ -U-ReRo \iff Adv_{AIA} $(A, \mathcal{M}, \pi^n) \leq \gamma$ for all A .

$Adv_{MIA} \Leftrightarrow U$ -ReRo

$$\mathcal{M}$$
 is $(0, \gamma)$ -U-ReRo \iff Adv_{MIA} $(A, \mathcal{M}, \pi^n) \leq \gamma$,

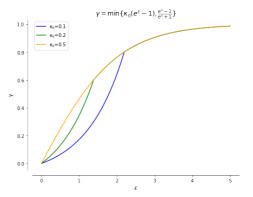
Additionally, if A^s is a strong MIA under uniform priors, then

$$\mathcal{M}$$
 is $(0, \frac{\gamma}{2})$ -U-ReRo \iff $\mathrm{Adv}_{\mathrm{MIA}}^s(A, \mathcal{M}, \pi^n) \leq \gamma.$

ε -DP \Rightarrow (η, γ) -U-ReRo

If ${\mathcal M}$ satisfies $\varepsilon\text{-DP}\!,$ then it also satisfies $(\eta,\gamma)\text{-U-ReRo}$ with

$$\gamma = \min\{\kappa_{\eta}(\mathrm{e}^{arepsilon} - 1), rac{\mathrm{e}^{arepsilon} - 1}{\mathrm{e}^{arepsilon} + 1}\}$$

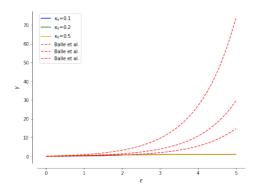


New Adversarial bounds for U-ReRo

ε -DP \Rightarrow (η, γ) -U-ReRo

If $\mathcal M$ satisfies $\varepsilon\text{-DP}$, then it also satisfies $(\eta,\gamma)\text{-U-ReRo}$ with

$$\gamma = \min\{\kappa_{\eta}(\mathrm{e}^{arepsilon} - 1), rac{\mathrm{e}^{arepsilon} - 1}{\mathrm{e}^{arepsilon} + 1}\}$$



New Adversarial bounds for U-ReRo

ε -DP \Rightarrow (η, γ) -U-ReRo

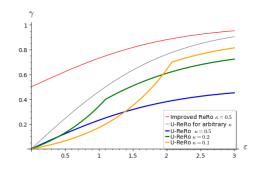
If $\mathcal M$ satisfies ε -DP, then it also satisfies (η,γ) -U-ReRo with

$$\gamma = \min\{\kappa_{\eta}(\mathrm{e}^{arepsilon} - 1), rac{\mathrm{e}^{arepsilon} - 1}{\mathrm{e}^{arepsilon} + 1}\}$$

ε -DP \Rightarrow (0, γ)-U-ReRo (AIA)

If $\mathcal M$ satisfies $\varepsilon\text{-DP}$, then it also satisfies (0, γ)-ReRo with

$$\gamma = \min\{\kappa_0(e^{\varepsilon} - 1), \kappa_0(m - 1)\frac{e^{\varepsilon} - 1}{e^{\varepsilon} + 1} + \kappa_0 - \kappa_0^-\},\$$



★ ReRo overestimates the privacy leakage

Our Improved Bound
$rac{\gamma}{2} \leq rac{\mathrm{e}^{arepsilon} - 1}{\mathrm{e}^{arepsilon} + 1}$
$\gamma \leq \min\{\frac{1}{m}(\mathrm{e}^{arepsilon}-1), \frac{m-1}{m}\frac{\mathrm{e}^{arepsilon}-1}{\mathrm{e}^{arepsilon}+1}\}$
$\gamma \leq \min\{\frac{e^{\varepsilon}}{m}, \frac{m-1}{m}\left(\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}+1\right)\}$
$\gamma \leq \min\{\frac{1}{m}(e^{\varepsilon}-1), \frac{m-1}{m}\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}\}$
$\gamma \leq \min\{\kappa_{\eta}(\mathrm{e}^{arepsilon}-1),rac{\mathrm{e}^{arepsilon}-1}{\mathrm{e}^{arepsilon}+1}\}$
$\gamma \leq \min\{\kappa_0(e^{\varepsilon}-1), \kappa_0(m-1)\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1} + \kappa_0 - \kappa_0^-\}$

- X ReRo overestimates the privacy leakage
- \checkmark our (η, γ) -U-ReRo generalizes the membership and attribute advantages to arbitrary reconstruction attacks

Attack	Our Improved Bound
MIA Strongest	$\frac{\gamma}{2} \leq \frac{e^{\varepsilon} - 1}{e^{\varepsilon} + 1}$
MIA Informed	$\gamma \leq \min\{\frac{1}{m}(\mathrm{e}^{\varepsilon}-1), \frac{m-1}{m}\frac{\mathrm{e}^{\varepsilon}-1}{\mathrm{e}^{\varepsilon}+1}\}$
AIA Informed	$\gamma \leq \min\{\frac{e^{\varepsilon}}{m}, \frac{m-1}{m}\left(\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}+1\right)\}$
AIA Inf. Uniform	$\gamma \leq \min\{\frac{1}{m}(\mathrm{e}^{\varepsilon}-1), \frac{m-1}{m}\frac{\mathrm{e}^{\varepsilon}-1}{\mathrm{e}^{\varepsilon}+1}\}$
DRA Informed	$\gamma \leq \min\{\kappa_{\eta}(\mathrm{e}^{arepsilon}-1), rac{\mathrm{e}^{arepsilon}-1}{\mathrm{e}^{arepsilon}+1}\}$
DRA Informed	$\gamma \leq \min\{\kappa_0(e^{\varepsilon}-1), \kappa_0(m-1)\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1} + \kappa_0 - \kappa_0^-\}$

- ★ ReRo overestimates the privacy leakage
- \checkmark our (η, γ) -U-ReRo generalizes the membership and attribute advantages to arbitrary reconstruction attacks
- Our results allow to choose lower privacy parameters (ε), achieving better utility without increasing privacy risks

Attack	Our Improved Bound
MIA Strongest	$\frac{\gamma}{2} \leq \frac{e^{\varepsilon} - 1}{e^{\varepsilon} + 1}$
MIA Informed	$\gamma \leq \min\{\frac{1}{m}(\mathrm{e}^{\varepsilon}-1), \frac{m-1}{m}\frac{\mathrm{e}^{\varepsilon}-1}{\mathrm{e}^{\varepsilon}+1}\}$
AIA Informed	$\gamma \leq \min\{\frac{e^{\varepsilon}}{m}, \frac{m-1}{m} \left(\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}+1\right)\}$
AIA Inf. Uniform	$\gamma \leq \min\{\frac{1}{m}(e^{\varepsilon}-1), \frac{m-1}{m}\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}\}$
DRA Informed	$\gamma \leq \min\{\kappa_{\eta}(\mathrm{e}^{arepsilon}-1), rac{\mathrm{e}^{arepsilon}-1}{\mathrm{e}^{arepsilon}+1}\}$
DRA Informed	$\gamma \leq \min\{\kappa_0(e^{\varepsilon}-1), \kappa_0(m-1)\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1} + \kappa_0 - \kappa_0^-\}$

13/15

- ReRo overestimates the privacy leakage
- \checkmark our (η, γ) -U-ReRo generalizes the membership and attribute advantages to arbitrary reconstruction attacks
- Our results allow to choose lower privacy parameters (ε), achieving better utility without increasing privacy risks
- ✓ We use U-ReRo to prove a novel bound for the advantage of an arbitrary AIA under DP.

Attack	Our Improved Bound
MIA Strongest	$\frac{\gamma}{2} \leq \frac{\mathrm{e}^{\varepsilon} - 1}{\mathrm{e}^{\varepsilon} + 1}$
MIA Informed	$\gamma \leq \min\{\frac{1}{m}(e^{\varepsilon}-1), \frac{m-1}{m}\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}\}$
AIA Informed	$\gamma \leq \min\{\frac{e^{\varepsilon}}{m}, \frac{m-1}{m}\left(\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}+1\right)\}$
AIA Inf. Uniform	$\gamma \leq \min\{\frac{1}{m}(e^{\varepsilon}-1), \frac{m-1}{m}\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}\}$
DRA Informed	$\gamma \leq \min\{\kappa_{\eta}(\mathrm{e}^{arepsilon}-1), rac{\mathrm{e}^{arepsilon}-1}{\mathrm{e}^{arepsilon}+1}\}$
DRA Informed	$\gamma \leq \min\{\kappa_0(e^{\varepsilon}-1), \kappa_0(m-1)\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1} + \kappa_0 - \kappa_0^-\}$

- ★ ReRo overestimates the privacy leakage
- \checkmark our (η, γ) -U-ReRo generalizes the membership and attribute advantages to arbitrary reconstruction attacks
- Our results allow to choose lower privacy parameters (ε), achieving better utility without increasing privacy risks
- We use U-ReRo to prove a novel bound for the advantage of an arbitrary AIA under DP.

Attack	Our Improved Bound
MIA Strongest	$\frac{\gamma}{2} \leq \frac{e^{\varepsilon} - 1}{e^{\varepsilon} + 1}$
MIA Informed	$\gamma \leq \min\{\frac{1}{m}(\mathrm{e}^{\varepsilon}-1), \frac{m-1}{m}\frac{\mathrm{e}^{\varepsilon}-1}{\mathrm{e}^{\varepsilon}+1}\}$
AIA Informed	$\gamma \leq \min\{\frac{e^{\varepsilon}}{m}, \frac{m-1}{m} \left(\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}+1\right)\}$
AIA Inf. Uniform	$\gamma \leq \min\{\frac{1}{m}(e^{\varepsilon}-1), \frac{m-1}{m}\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}\}$
DRA Informed	$\gamma \leq \min\{\kappa_{\eta}(\mathrm{e}^{arepsilon}-1), rac{\mathrm{e}^{arepsilon}-1}{\mathrm{e}^{arepsilon}+1}\}$
DRA Informed	$\gamma \leq \min\{\kappa_0(e^{\varepsilon}-1), \kappa_0(m-1)\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1} + \kappa_0 - \kappa_0^-\}$

Thanks for your attention!

Backup 1: The different advantages

Formal definition of advantage:

$$Adv_{MIA}^{(*)} = 2 \Pr[Exp_{(*)}^{MIA}] - 1$$
 (1)

We have the following relationship between the advantage of a strong membership experiment with resampling and without resampling:

$$Adv_{MIA} = 2 \Pr[Exp^{MIA}] - 1 = \Pr[Exp_s^{MIA}] - \frac{1}{2} = \frac{1}{2} Adv_{MIA}^s$$

This is coherent with the fact that Adv_{MIA} is upper-bounded by $\frac{1}{2}$ in a strong membership experiment.

In general attack performance metrics are average-case

$$\Pr_{\substack{Z \sim \pi \\ \theta \sim \mathcal{M}(D_Z)}}(\mathit{I}(A(\theta),Z) = 0) = \sum_{z \in \mathcal{Z}} \Pr_{\theta \sim \mathcal{M}(D_z)}(\mathit{I}(A(\theta),z) = 0)\pi(z)$$

- We can make them worse-case by modifying the universe distribution to $z \in \{z_0, z_1\}$
 - we can choose z₀ to be the worse case
 - the bound will still hold but the baseline error will adjust it.