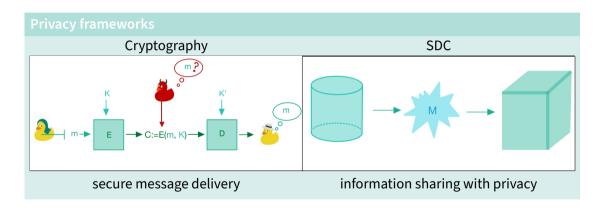


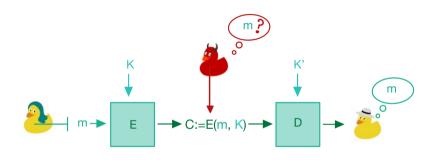
Motivation

"Privacy is one the biggest problems in this new electronic age"- Andy Grove (former INTEL Ceo)

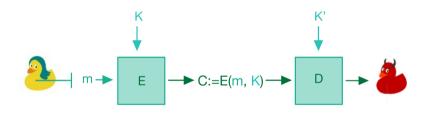
Data Privacy



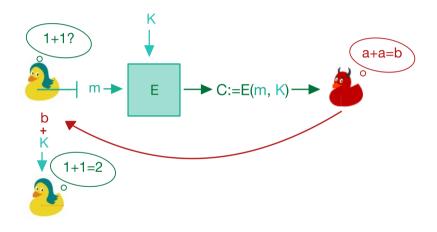
Cryptography



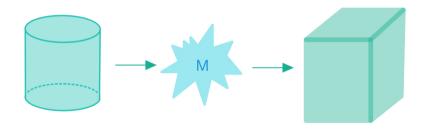
Cryptography



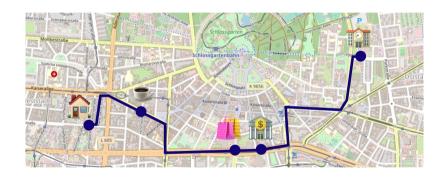
Cryptography (FHE)



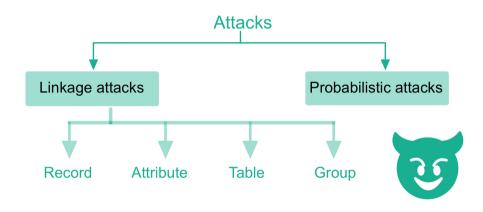
Statistical Disclosure Control



Identifiers Vs quasi-identifiers



Attacks



Real examples

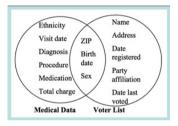


Figure 1: Zip code, gender, and birth date were likely sufficient in 1990 to identify 87% of individuals in the U.S.

Figure 2: 8 movie ratings and dates were enough to uniquely identify 99% of viewers in the Netflix Prize dataset

Privacy Notions in SDC

Syntactic Notions

Database properties

Semantic Notions ϵ -differential privacy

element-level

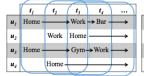
- y
- *k*-anonymity
- *l*-diversity
- *t*-closeness
- Attribute Privacy

w-event privacy

event-level

 ℓ -trajectory privacy

user-level



Syntactic Notions

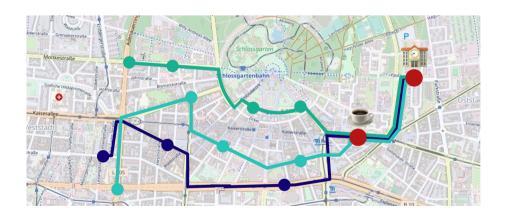
k-anonymity

We say that a dataset D satisfies k-Anonymity for a given value $k \in \mathbb{Z}$ if: For each row $r_1 \in D$, there exist at least k-1 other rows $r_2 \dots r_k \in D$ such that

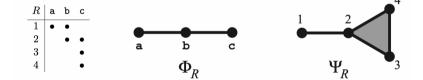
$$\Pi_{qi(D)}r_1 = \Pi_{qi(D)}r_2, \dots, \Pi_{qi(D)}r_1 = \Pi_{qi(D)}r_k$$

where $q_i(D)$ is the quasi-identifiers of D and $\Pi q_i(D)r$ represents the columns of r containing quasi-identifiers (i.e. the projection of the quasi-identifiers).

Syntactic Notions



$$\Phi_{R} := \{ \gamma \subseteq Y \mid \exists x \in X : (x, y) \in R \quad \forall y \in \gamma \}
\Psi_{R} := \{ \sigma \subseteq x \mid \exists y \in Y : (x, y) \in R \quad \forall x \in \sigma \}$$



$$\phi_R: \quad \Psi_R \longrightarrow \Phi_R \qquad \psi_R: \quad \Phi_R \longrightarrow \Psi_R$$

$$\sigma \leadsto \cap_{x \in \sigma} Y_x \qquad \qquad \gamma \leadsto \cap_{y \in \gamma} X_y$$

Atribute Privacy

Let D be a database. X, Y sets of users and attributes of D resp. We say that D has attribute privacy if the relation R drawn from D veryfies:

$$\phi_R \circ \psi_R = Id_{\Phi_R}$$

Theorem

Let *R* relation. *X*, *Y* non empty sets, then:

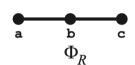
$$\Phi_R$$
 has not free faces $\Rightarrow \phi_R \circ \psi_R = Id_{\Phi_R}(A.P)$

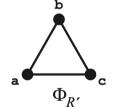
Theorem

Let *R* relation. *X*, *Y* non empty sets, then:

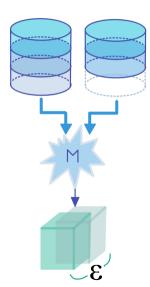
$$\phi_R \circ \psi_R = Id_{\Phi_R}(A.P)$$
 $\wedge \qquad \Rightarrow \qquad \Phi_R \text{ has not free faces}$
 $\psi_R(Y_x) = \{x\}(U.I)$

R	a	b	С
1	•	•	
2 3		•	•
3			•
4			•



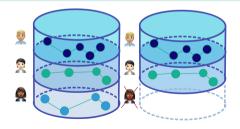


Differential Privacy

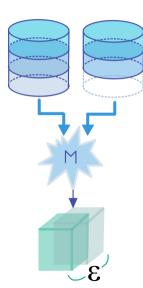


ϵ -Differential Privacy

$$\mathbb{P}(\mathit{M}(\mathit{D}) = r) \leq \mathrm{e}^{\epsilon} \cdot \mathbb{P}(\mathit{M}(\mathit{D}') = r)$$

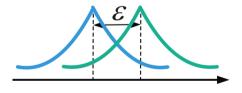


Differential Privacy



Privacy Loss (by observing r)

$$\mathcal{L}^{r}_{M(D)||M(D')} = ln\left(\frac{\mathbb{P}(M(D) = r)}{\mathbb{P}(M(D') = r)}\right)$$



Differential Privacy Properties

Group Privacy

Given M a ϵ -DP mechanism, for all $||D - D'||_1 \le k$ and all $r \in Range(M)$

$$\mathbb{P}(M(D) = r) \leq e^{k\epsilon} \cdot \mathbb{P}(M(D') = r)$$

Post-procesing

Let $M \colon \mathbb{N}^{|\mathcal{X}|} \to \mathcal{R}$ be a randomized algorithm that is ϵ -DP. Let $f \colon \mathcal{R} \to \mathcal{R}'$ be an arbitrary map. Then $f \circ M \colon \mathbb{N}^{|\mathcal{X}|} \to \mathcal{R}'$ is ϵ -DP.

Differential Privacy Properties

Sequential Composition

Let $M_1: \mathbb{N}^{|\mathcal{X}|} \to \mathcal{R}_1$ be an ϵ_1 -DP algorithm, and let $M_2: \mathbb{N}^{|\mathcal{X}|} \to \mathcal{R}_2$ be an ϵ_2 -DP algorithm. Then their combination is $(\epsilon_1 + \epsilon_2)$ -DP:

$$M_{1,2}: \mathbb{N}^{|\mathcal{X}|} \longrightarrow \mathcal{R}_1 \times \mathcal{R}_2$$

$$D \rightsquigarrow (M_1(D), M(D_2))$$

The ℓ_1 -sensitivity of a function $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^n$ is:

$$\Delta(f) := \max_{\|D,D'\|_1=1} \|f(D) - f(D')\|_1$$

Antecedentes penales??

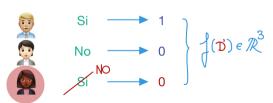
$$\begin{array}{ccc}
& \text{Si} & \longrightarrow & 1 \\
& \text{No} & \longrightarrow & 0 \\
& \text{Si} & \longrightarrow & 1
\end{array}$$

ℓ_1 -sensitivity

The ℓ_1 -sensitivity of a function $f \colon \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^n$ is:

$$\Delta(f) := \max_{\|D,D'\|_1=1} \|f(D) - f(D')\|_1$$

Antecedentes penales??



ℓ_1 -sensitivity

The ℓ_1 -sensitivity of a function $f \colon \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^n$ is:

$$\Delta(f) := \max_{\|D,D'\|_1=1} \|f(D) - f(D')\|_1$$

Antecedentes penales??

$$\triangle d = 7$$

ℓ_1 -sensitivity

The ℓ_1 -sensitivity of a function $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^n$ is:

$$\Delta(f) := \max_{\|D,D'\|_1=1} \|f(D) - f(D')\|_1$$

UNBOUNDED SENSITIVITIES!!

outliers and huge noise

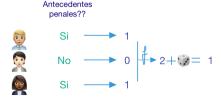
Algorithms Achieving Differential Privacy Laplace Mechanism

Laplace Mechanism

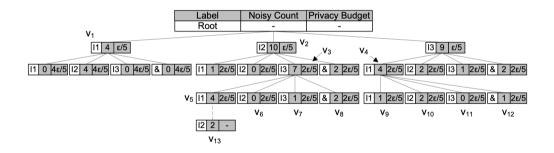
Given any function $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^n$ the Laplace mechanism is defined as:

$$ML(D, f(\cdot), \epsilon) = f(D) + (Y_1, \ldots, Y_n)$$

where Y_i are i.i.d. random variables drawn from $Lap(\frac{\Delta f}{\epsilon})$.



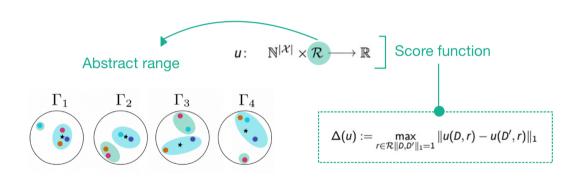
Algorithms Achieving Differential Privacy Laplace Mechanism



Algorithms Achieving Differential Privacy Exponential Mechanism

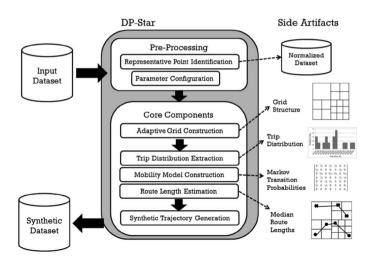
H	SMOKES	HAS_CANCER	DRINKS_SODA
	•	•	
		•	
			•

Algorithms Achieving Differential Privacy Exponential Mechanism

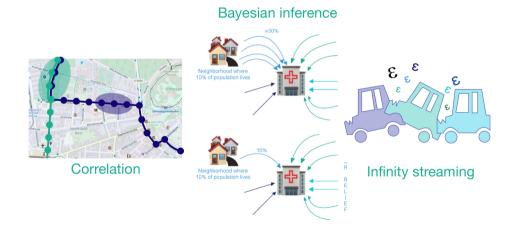


 $M_E(D, u, \mathcal{R})$ selects and outputs an element $r \in \mathcal{R}$ with probability proportional to $exp(\frac{\epsilon u(D,r)}{2\Delta(u)})$. 2u

Mechanism Achieving Differential Privacy Synthetic Data



Limitations on Differential Privacy



Conclusions and Future Research

