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Motivation
“Privacy is one the biggest problems in this new electronic age”- Andy Grove (former
INTEL Ceo)
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Data Privacy

Privacy frameworks
Cryptography SDC

secure message delivery information sharing with privacy
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Cryptography
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Cryptography
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Cryptography (FHE)
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Statistical Disclosure Control
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Identifiers Vs quasi-identifiers
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Attacks
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Real examples

Figure 1: Zip code, gender, and birth
date were likely sufficient in 1990 to
identify 87% of individuals in the U.S.

Figure 2: 8 movie ratings and dates
were enough to uniquely identify 99%
of viewers in the Netflix Prize dataset
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Privacy Notions in SDC

Syntactic Notions Semantic Notions

Database properties ϵ-differential privacy

■ k-anonymity

■ l-diversity

■ t-closeness
■ Attribute Privacy

event-level user-level

w-event privacy ℓ-trajectory privacy

element-level
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Syntactic Notions

k-anonymity

We say that a dataset D satisfies k-Anonymity for a given value k ∈ Z if: For each row
r1 ∈ D, there exist at least k − 1 other rows r2 . . . rk ∈ D such that

Πqi(D)r1 = Πqi(D)r2, . . . ,Πqi(D)r1 = Πqi(D)rk

where qi(D) is the quasi-identifiers of D and Πqi(D)r represents the columns of r
containing quasi-identifiers (i.e. the projection of the quasi-identifiers).
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Syntactic Notions
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Attribute Privacy

ΦR := {γ ⊆ Y | ∃x ∈ X : (x, y) ∈ R ∀y ∈ γ}
ΨR := {σ ⊆ x | ∃y ∈ Y : (x, y) ∈ R ∀x ∈ σ}
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Attribute Privacy

ϕR : ΨR ΦR

σ ∩x∈σYx

ψR : ΦR ΨR

γ ∩y∈γXy

Atribute Privacy

Let D be a database. X, Y sets of users and atttributes of D resp. We say that D has attribute
privacy if the relation R drawn from D veryfies:

ϕR ◦ ψR = IdΦR
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Attribute Privacy

Theorem
Let R relation. X, Y non empty sets, then:

ΦR has not free faces ⇒ ϕR ◦ ψR = IdΦR(A.P)

Theorem
Let R relation. X, Y non empty sets, then:

ϕR ◦ ψR = IdΦR(A.P)

∧ ⇒ ΦR has not free faces

ψR(Yx) = {x}(U.I)
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Attribute Privacy
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Differential Privacy

ϵ-Differential Privacy

P(M(D) = r) ≤ eϵ · P(M(D′) = r)
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Differential Privacy

Privacy Loss (by observing r)

LrM(D)||M(D′) = ln
(
P(M(D) = r)
P(M(D′) = r)

)
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Differential Privacy Properties

Group Privacy

GivenM a ϵ-DP mechanism, for all
∥D− D′∥1 ≤ k and all r ∈ Range(M)

P(M(D) = r) ≤ ekϵ · P(M(D′) = r)

Post-procesing

LetM : N|X | → R be a randomized
algorithm that is ϵ-DP. Let
f : R → R′ be an arbitrary map.
Then f ◦ M : N|X | → R′ is ϵ-DP.
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Differential Privacy Properties

Sequential Composition

LetM1 : N|X | → R1 be an ϵ1-DP algorithm, and letM2 : N|X | → R2 be an ϵ2-DP algorithm.
Then their combination is (ϵ1 + ϵ2)-DP :

M1,2 : N|X | R1 ×R2

D (M1(D),M(D2))
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Algorithms Achieving Differential Privacy

ℓ1-sensitivity

The ℓ1-sensitivity of a function f : N|X | → Rn is:

∆(f) := max
∥D,D′∥1=1

∥f(D)− f(D′)∥1
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The ℓ1-sensitivity of a function f : N|X | → Rn is:

∆(f) := max
∥D,D′∥1=1

∥f(D)− f(D′)∥1

23



Algorithms Achieving Differential Privacy

ℓ1-sensitivity

The ℓ1-sensitivity of a function f : N|X | → Rn is:

∆(f) := max
∥D,D′∥1=1

∥f(D)− f(D′)∥1

UNBOUNDED SENSITIVITIES!!

outliers and huge noise
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Algorithms Achieving Differential Privacy
Laplace Mechanism

Laplace Mechanism

Given any function f : N|X | → Rn the Laplace mechanism is defined as:

ML(D, f(·), ϵ) = f(D) + (Y1, . . . , Yn)

where Yi are i.i.d. random variables drawn from Lap(∆fϵ ).
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Algorithms Achieving Differential Privacy
Laplace Mechanism
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Algorithms Achieving Differential Privacy
Exponential Mechanism

27



Algorithms Achieving Differential Privacy
Exponential Mechanism
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Mechanism Achieving Differential Privacy
Synthetic Data
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Limitations
on Differential Privacy
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Conclusions and Future Research

31


	notions
	Laplace Mechanism
	Exponential Mechanism
	Synthetic Data
	on Differential Privacy

