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Abstract

In research on data privacy, differential privacy (DP) is the method of choice to measure
privacy leakage while conducting data analysis. A DP algorithm is an algorithm that
limits the privacy leakage when its result is released publicly. However, privacy attacks
are possible against DP algorithms if the underlying data is correlated — even if the
privacy leakage according to DP is low. As a response, researchers have proposed various
alternative semantic privacy notions that measure privacy leakage while taking correlation
into account. However, increasingly strict privacy measurements call into question whether
this allows for sufficient utility for data analysis algorithms. The theoretical limits on their
utility remain unclear.

Therefore, this thesis investigates the utility of algorithms that limit privacy leakage ac-
cording to Bayesian differential privacy (BDP), a common extension of DP. We directly
prove statements about the utility of BDP algorithms, as well as how much the privacy
leakage of a DP algorithm increases when measuring it with BDP. We present novel the-
oretical results for various correlation models of the data: arbitrary correlation, genomic
data, multivariate Gaussian correlation and data following a Markov chain. We find that
BDP algorithms cannot provide good utility when the correlation model is completely
arbitrary. However, we also show that the increase in measured privacy leakage from DP
to BDP is highly dependent on the specific correlation model. These results enable the
creation of BDP algorithms with high utility for correlation models where the increase
in privacy leakage is relatively small. For example, high utility BDP algorithms on data
from a multivariate Gaussian correlation model are possible if the strength of correlation
is sufficiently weak — even if all records in the data are correlated with each other. Ad-
ditionally, we empirically test the utility of BDP algorithms on real-world data sets and
find improvements over the state of the art.
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1 Introduction

Data analysis is becoming increasingly important and has enabled many breakthroughs
in different fields such as social science and health. However, data analysis also enables
serious privacy violations [42]. For example, Sweeney [46] found in 2000 that the majority
of the US citizens can be uniquely identified in a data set if it includes their ZIP code,
their gender and their date of birth. At the time, such information was publicly available
in hospital discharge data [46].

Since then, differential privacy (DP) [15] has emerged as the standard privacy metric in
data analysis [29]. It is a notion of statistical disclosure control [23], which aims to release
global statistics about a data set, while keeping the records of individuals private. DP is
a semantic privacy notion [29] that measures the privacy leakage € of an algorithm pro-
cessing the dataset, whose output is released publicly. To limit the privacy leakage, the
output of a non-trivial algorithm must be randomized so that an adversary cannot con-
fidently identify the original input data. More specifically, a DP algorithm must generate
outputs with “similar” probability for neighboring data sets. Two data sets are neighbors
if they only differ in one record. The similarity in the output distributions is measured by
the privacy leakage ¢ > 0. The smaller ¢, the higher the similarity and the stronger the
privacy guarantees. Therefore, since the probability of the output is similar (up to €), an
adversary cannot distinguish (up to €) whether the input database contains a targeted
record, independent of the auxiliary knowledge. More formal interpretations of the privacy
guarantees of DP have been proven in [25].

When conducting data analysis with DP algorithms, we need to consider the privacy-
utility trade-off [23]: Offering strong privacy protections for individuals comes at the cost
of utility of the data analysis: E.g., the strongest privacy protection would be to release
nothing at all, offering no utility. On the other hand, high utility compromises privacy:
E.g., if the we simply release the original data set to maximize utility to data analysts,
privacy is destroyed.

DP offers several benefits such us being independent of the adversary’s prior background
knowledge: A DP algorithm limits the posterior-to-posterior change in the belief of any
adversary. The adversary’s beliefs after seeing the output of the algorithm are roughly
equal to their beliefs after seeing the output for a neighboring data set [24]. Nonetheless,
the guarantee of limited posterior-to-posterior belief change is weaker than a limit on
prior-to-posterior change: Here, one would limit the change in beliefs of the adversary
before and after seeing the output of the algorithm. Figure 1 visualizes the difference be-
tween posterior-to-posterior and prior-to-posterior. However, the use of a privacy notion
offering a bound on all prior-to-posterior belief changes is understood to offer no util-
ity [29]. This follows from an impossibility result of Dwork and Naor [13]. Therefore, DP
has been the standard privacy metric able to produce a useful privacy-utility trade-off.

However, researchers have discovered that DP algorithms can leak private information if
the underlying data is correlated [26, 51, 56]. Correlation among data records is a common
attribute of real world data sets, e.g., consider friendships in a social network [31] or the
genome of family members [1]. Kifer et al. [26] were first to observe unexpected inference
of private information under DP. They demonstrate that an adversary can detect the



UNIVERSITAT POLITECNICA \‘(IT
DE CATALUNYA \

BA R C E Lo N AT ECH Karlsruher Institut fiir Technologie

aN

Adversary’s initial belief

Jl(D/ \A(D’)
Adversary’s belief Adversary’s belief
after seeing A(D) after seeing A(D")

Figure 1: Difference between posterior-to-posterior and prior-to-posterior. The belief of
the adversary about a private piece of information, e.g., the income of a person, is
represented as a distribution over all possible incomes. This belief changes when the
adversary sees the output of algorithm A with input data D, or when they see the
output of A with a different input D’. The difference between (2) and (3) is the
posterior-to-posterior change in the adversary’s belief. The difference between (1) and
(2) — or between (1) and (3) — is called the prior-to-posterior change.

presence of a friendship in a social network. This has led some to claim that DP makes an
implicit assumption of independent data [10, 26, 32]. This is not the case - its mathematical
definition holds both for correlated and independent data [49]. However, this mathematical
definition does not always imply the privacy guarantees and interpretation that researchers
expect of DP when data correlations are present.

In response, researchers have proposed various new semantic privacy notions to explicitly
address the problem of correlation and data privacy. The most notable ones comprise
Bayesian differential privacy [55], dependent differential privacy [32], and blowfish pri-
vacy [21]. Similarly to DP, Bayesian differential privacy (BDP) also requires that an
algorithm publishes “similar” results if a single record — the so-called target record — in
the data set changes its value. Here, similarity is measured by the so called Bayesian dif-
ferential privacy leakage (BDPL), analogous to the DP privacy leakage. However, unlike
DP, the values of the remaining records are not fixed in this comparison. Instead, they are
drawn from the conditional probability distribution of the remaining data set, given the
target record. Thus, the effect of correlation from the targeted record on the remaining
data set is considered. In this thesis, we focus on BDP in favor of the other two privacy
notions for two reasons: (1) The definition of BDP does not restrict the correlation that
is possible between records, unlike dependent differential privacy and blowfish. (2) Vari-
ous other privacy notions [11, 30, 50, 54] published in smaller conferences or journals are
variations of BDP. Thus, by focusing on BDP the results of our research will apply to a
number of semantic privacy notions.
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Yang et al. [55] show that a BDP algorithm limits the difference in prior-to-posterior
odds for the adversary’s belief of the value of a specific record. While BDP does not limit
all prior-to-posterior changes, it does limit changes in belief about the value of records
arising from the results of the algorithm and the correlation between records. Given the
aforementioned results that show the complexity of retaining global statistics under a
prior-to-posterior metric [13, 29] it is questionable whether BDP algorithms can provide
sufficient utility in general. It is an important question whether a BDP algorithm can
provide sufficient utility, as algorithms with poor utility will not be adopted, even if they
offer high privacy. The theoretical bounds on the utility of BDP algorithms have not yet
been investigated to the best of our knowledge.

Consequently, this thesis will investigate the following research questions: What utility
can BDP algorithms achieve when we make no assumptions about the correlation within
the data? Additionally, what utility can be achieved when a certain correlation model
is assumed (i.e., genomic data, data with a multivariate Gaussian correlation model, or
data following a Markov chain)? To answer these questions, we employ theoretical proofs,
simulations with synthetic data and an experiment on real-world data. In our proofs,
utility will be measured using the metric («, 5)-accuracy which calculates the maximum
probability 5 of an error of magnitude « [5]. In many cases, we prove the accuracy of a
BDP algorithm by reducing it to the accuracy of a DP algorithm. This involves proving
the relationship between DP and BDP, i.e., proving an upper bound on how much the
BDPL increases compared to the DP privacy leakage. Additionally, we run Monte Carlo
simulations to estimate the BDPL empirically and indicate whether these upper bounds
are tight. Finally, the experiment tests whether these bounds improve utility of BDP
algorithms on real-world data.

The thesis makes the following main contributions:

e We prove the general bound that a DP algorithm with privacy leakage € has a BDPL
of at most me, where m is the number of correlated records. We show that this bound
on the BDPL is tight for arbitrary correlation models, and how the bound impacts
the («, 8)-accuracy of DP algorithms used as BDP algorithms. Additionally, we
prove a lower bound of («, §)-accuracy for any BDP algorithm processing data with
arbitrary correlation.

e We prove that the general bound is nearly tight for genomic data: A counting query
with DP privacy leakage ¢ has a BDPL of at least (m — 1)e, where m is the size of
the largest family in the data. Here, we also prove a lower bound of («, §)-accuracy
for any BDP counting query under genomic correlation.

e We prove the Gaussian bound on the BDPL of certain DP algorithms when data
has a multivariate Gaussian correlation model. We show that this improves upon
the state of the art when all records are “weakly” correlated, and how it impacts
the (o, §)-accuracy of DP algorithms used for BDP. Our simulations suggest that
the bound can be further improved.

e We prove the Markov chain bound on the BDPL of DP algorithms when data follows
a Markov chain. This improves on the state of the art when the transition probabili-
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ties of the Markov chain are sufficiently similar. Again, we show the (a, #)-accuracy
of DP algorithms when using this bound to provide BDP guarantees. Simulations
indicate that a better bound is possible.

e We test the utility of BDP algorithms on real-world data sets that correspond to
the correlation models we have investigated in our theoretical proofs. We find that
using the Gaussian bound and the Markov chain bound yields utility improvements
compared to the state of the art.

Overall, this thesis shows when privacy can be protected while keeping useful global
statistics, and when both objectives cannot be met at the same time. These novel results
expand the research community’s understanding of the conflict between privacy and utility
under correlation. The improved bounds on the BDPL of DP algorithms enable the safe
application of more existing DP algorithms to situations with correlation. This is not
limited to the algorithms presented in this thesis.

The remaining parts of this thesis are organized as follows: We first discuss important
background information on correlation and different privacy notions such as DP and
BDP. This is followed by the problem statement, and how we address it with our method-
ology. In the main body of the thesis, we investigate the utility of BDP algorithms in
four different situations: (1) data with arbitrary correlation, (2) genomic data, (3) data
with a multivariate Gaussian correlation model, and (4) data following a Markov chain.
Subsequently, we test the utility of BDP algorithms on real-world data sets. Finally, we
present the conclusions from our work. In addition, a glossary of commonly used terms
and abbreviations is found after the bibliography.
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Notation Description

X Domain of a single record x € X.

D= (xy,...,2,)" € A" Data tuple with n records.

dy(D,D') =3, i # i} Hamming distance of data tuples D, D’ € A™.

X=(X,...,X,) € Random vector. Data tuple D is drawn from the dis-
tribution of X.

[n] Set {1,...,n} for n € N.

Xg =X, Xi) " Random vector of a subset K = {iy,...,ix} C [n] of
the random variables X1,...,X,,.

A X" =Y Randomized algorithm with input from domain A"

and output from codomain ).

Y Random variable representing output of algorithm A.

Table 1: Notation

2 Background

This section introduces privacy notions and the concepts of correlation that will be im-
portant throughout the thesis.

First, the notation. In this thesis, X denotes the domain of a single record x € X. A data
tuple with n records is D = (z1,...,2,)" € X™ and the hamming distance dg (D, D’)
between two data tuples of equal size n is the number of records that differ between
them. As we are dealing with correlation between records in D, we must represent the
distribution that D is drawn from. Here, X = (X;,...,X,)" € X" is a random vector
and D is drawn from the distribution of X. It will often be useful to refer to a subset of
the random variables X, ..., X,,. Let [n] denote the set [n] :={1,...,n}, and let K C [n]
be a set of indices with cardinality k¥ = |K|. Then, random vector X € X* is defined as
Xg = (X;y,...,X;,)" for indices {iy,...,ix} = K. Throughout the thesis, A : X" — Y
is a randomized algorithm that takes a data tuple D € A™ as input and returns an output
from the codomain ). The output of A is also represented by the random variable Y € Y
that depends on the randomization of A and the random vector X. An overview over the
notation is given in Table 1.

2.1 Differential Privacy

This section introduces differential privacy, its intuitive meaning, how to achieve DP
algorithms, and a theoretical measure of the accuracy of a DP algorithm. First, we define
differential privacy:

Definition 2.1 (Differential Privacy [15]). A randomized algorithm A : X™ — ) is called
e-differentially private, if and only if for all measurable sets S C ), for any target index

10
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i € [n], for any target values z;, 7 € X, and for any remaining values x € X!, we have

PI[Y es | X[n]\{i} =x,X;, = CL’Z] <e° PI“[Y es | X[n]\{i} =x,X;,= x;] (1)

Intuitively, this means the likelihood of a specific output of an e-DP algorithm only
changes a little (at most by exp(e)) if a single record in the data tuple has a different
value and all other records stay the same. The idea is to make it difficult for an adversary
to distinguish between the two scenarios when observing the result of the e-DP algorithm.
A more concrete interpretation of the meaning of DP is given by Wasserman and Zhou in
terms of hypothesis testing [53]: A statistical test between hypotheses Hy : X; = z; and
H, : X; = 2} that uses the output of an e-DP algorithm has its informativeness bounded
by a function of the privacy leakage €. It is important to note that this result assumes that
all records are independently and identically distributed. We will later see that breaking
this assumption of independence enables privacy attacks against DP algorithms.

The level of privacy-protection of an e-DP algorithm depends on two factors:

1. The neighborhood definition encapsulates which information can change while the
probabilities of the output must remain similar up to €. In other words, it defines
which situations are indistinguishable for the adversary. Definition 2.1 corresponds
to DP with a bounded neighborhood, i.e., two situations with data tuples of equal size
are compared. Other variations include the unbounded neighborhood notion in which
the sizes of the data tuples differ by one, i.e., one record has been added or removed.
However, we focus on a bounded neighborhood due to its broad applicability and
relevance as well as its close relation to BDP, whose definition will follow.

A second dimension of the neighborhood notion is user-level or event-level DP [14].
In event-level DP, we aim to hide the presence or absence of a single event, so the
neighborhood notion only compares situations in which the data tuples differ by a
single event (e.g., a single location of a user). For user-level DP, the neighborhood
notion compares situations in which the data tuples differ by all events related to
a single user (e.g., all locations of a user). Definition 2.1 does not make explicit
whether it is user-level or event-level DP. Rather, this depends on whether a single
record z € X from data tuple D contains all information of a single user (user-level
DP), or only a part of it (event-level DP).

A survey on the different neighborhood definitions can be found in [12].

2. The privacy leakage € controls the privacy-utility trade-off. A smaller ¢ means that
the output distributions for different input data tuples are “closer together”, and
thus the participants enjoy higher privacy as it is more difficult for an adversary to
distinguish the different data tuples. Likewise, a bigger ¢ allows larger differences
in distribution, making it easier to distinguish them and therefore reducing privacy.
We will see how ¢ has a reversed influence on utility at the end of this section.

It is not directly clear what values of ¢ are sufficiently small for “good” privacy protection.
In [28], the authors find that the value of £ to prevent a disclosure risk of a record that
is processed by an e-DP algorithm depends on the domain of the record, and the query
that is computed. In their analysis of different situations, they find appropriate values

11
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of € between 0 and 5, with € = 5 once resulting in a 97% risk of disclosure. In practice,
even algorithms with considerably higher privacy leakages 5 < ¢ < 20 are considered
to “provide robust privacy protection in a variety of settings” according to the National
Institute of Standards and Technology [36, p. 1]. These algorithms have been shown to
resist certain specific privacy attacks [8], but have not been proven to give theoretical
guarantees of privacy protection.

There are a variety of methods to limit the privacy leakage of an originally deterministic
(non-private) function f [15]. Here, we introduce the Laplace mechanism, one of the
earliest and most common methods. It relies on the sensitivity of the function, and on the
Laplace distribution.

Definition 2.2 (Sensitivity [15]). Let f : X" — R be a function. Let D, D’ € X" be
bounded neighbors, i.e., they have hamming distance dg (D, D') = 1. The sensitivity of
function f is defined as

Af:=sup  [[f(D) = f(D)]x. (2)

dy(D,D")=1

Definition 2.3 (Laplace Distribution [27]). We say random vector Z € R follows the
Laplace distribution with location pn € R and scale b > 0 if the probability density of Z at
point x € R is

pale) = o (2521, )

The following definition and theorem from [15, p. 32] introduce the Laplace mechanism.

Definition 2.4 (Laplace Mechanism [15]). Let f : X — R be a function and let privacy
parameter € > 0 be positive. Let Z € R be a random variable that follows the Laplace
distribution with location 0 and scale Af/e. Then we call randomized algorithm

M.;: X" 3R, D+ f(D)+Z (4)

the Laplace mechanism.
Theorem 2.1 ([15]). The Laplace mechanism M, ; is e-DP.

As we can see, the Laplace mechanism consists of adding noise to the output of the
deterministic function f to limit its privacy leakage. The noise is sampled from a Laplace
distribution with scale Af/e.

Adding noise to the output of a function f undoubtedly has an impact on utility. This
impact can be quantified by («, §)-accuracy, a well-established metric of utility [5, 32].

Definition 2.5 ((«, 5)-Accuracy [5]). A randomized algorithm A is («a, #)-accurate with
respect to function f if for all data tuples D € X™ we have

Pr{lA(D) = f(D)| = o] < 5. (5)

12
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In different words, a randomized algorithm A is (o, )-accurate if an error of magnitude
a has a probability of at most 5. Thus, the smaller a and/or /3, the better the accuracy
of algorithm A. We can calculate the («, §)-accuracy of an algorithm that has achieved
DP through the Laplace Mechanism by applying the following corollary from [15, p. 34]:

Corollary 2.2 ([15]). Let M, s be the Laplace mechanism. Let 5 € (0, 1] be a probability.
Then M. s is («, f)-accurate with respect to f with

o=l <%) .g. (6)

Note that the error v in Equation (6) is the smallest possible error o with probability
p for the Laplace mechanism: There is no smaller o/ < «a so that algorithm M. ; is
(o, B)-accurate. This is apparent from the proof of Corollary 2.2 in [15, p. 34].

As an example of an application of Corollary 2.2, consider a sum query

FAOY 5 R D= (21,...,20) = > ;. (7)

i€[n]

This query has sensitivity Af = 1. When we use the Laplace mechanism with privacy
leakage ¢ = 2, we get a randomized algorithm M, ;. Corollary 2.2 tells us that with
probability 5 = 1% we can expect an error of magnitude

1\ 1
—ln(— ) :~2
“ n(o.m) 5 729 (8)

or greater. In other words, with probability 99% the output Mo (D) lies within a +2.3
range of the true result f(D). If we increase the privacy leakage to ¢ = 4, this range halves
to £1.2. In the second case, we have higher utility because the result of the algorithm
will likely be closer to the true result. We see that the utility of the Laplace mechanism
depends inversely on the privacy leakage €. This is the other side of the privacy-utility
trade-off introduced at the beginning of this section.

2.2 d-Privacy

The privacy notion d-privacy is a generalisation of DP that encapsulates the neighborhood
notion and privacy leakage ¢ into a single parameter d which measures distance between
data tuples [9]. It is useful because many variations of DP can be reformulated as d-privacy
with a specific distance metric d.

Definition 2.6 (d-privacy [9]). Let d : X" — R be a metric. A randomized algorithm
A X" — Y is called d-private if and only if for all data tuples D, D’ € X™ and all
measurable sets S C ) we have

Pr[y € S| X =D] <ePPIprly € §| X = D). (9)

It is made difficult for an adversary to distinguish situations in which data tuples D and
D’ are “close together” according to metric d. However, if the two data tuples are very

13
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different, the output distribution can change more radically and it becomes easier for the
adversary to distinguish. Note that the definition of d-privacy becomes equivalent to DP
if metric d = edy is the hamming distance, multiplied by the privacy leakage £ > 0.

2.3 Correlation

We have seen that some interpretations of the privacy protections of a DP algorithm
depend on the independence of the records in the data tuple [53]. Before reviewing how
correlation weakens certain privacy guarantees by DP algorithms, we must define the
concept in a mathematical fashion. Correlation is the counterpart of independence. We
use the following definition of independent random variables [39, p. 157].

Definition 2.7 (Mutual Independence [39]). The real random variables Xj, ..., X, are
called mutually independent if and only if, for all z1,...,z, € R

Pr(X < a0, Xy < ) = [[Pr[Xi < i), (10)

i=1
Two random variables X5, X5 are called dependent if they are not independent.

Originally, the term correlation only referred to linear dependence [39], which is quantified
below by the Pearson correlation coefficient. However, recent research on differential pri-
vacy and correlation uses the terms dependence and correlation interchangeably [32, 55].
We adopt the same convention and use the term linear correlation for linear dependence
to avoid confusion.

Sometimes, we also have the situation that only a subset of the random variables X, ..., X,
is independent. This can be expressed by group independence [40, p. 187].

Definition 2.8 (Group Independence [40]). We say that random variables Xj, ..., X,, are
independent of the random variables X,,y1,..., X, if for all z1,...,%p, Ts1, ..., 2, €R

Pr[Xl S $1,...,Xm S xmme—i—l S J7m+17-‘-aXn S xn]
=Pr[X; <xy,..., Xy <2 Pr[ X <z, ., Xn < ).

Here, the random variables within the group Xy, ..., X,, may be correlated, but they are
all independent of the group X,,11,..., X,.

An intuitive understanding of independence and correlation is given by the following
property. If random variables X; and X, are independent, then for any measurable set
S C R and for all z € R we have

Pr[X; € S| Xy = 2] = Pr[X; € 9] (12)

according to [39]. However, this equality does not hold for correlated X; and X5. Thus,
correlation occurs when information about X5 changes the probability distribution of X;
and vice versa.
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In this thesis, we are also interested in the strength of the correlation. The Pearson cor-
relation coefficient measures the extent of linear correlation [39, p. 158].

Definition 2.9 (Pearson Correlation Coefficient [39]). Let X, X» be two random vari-
ables with means p, s € R, variances 0 < o%,03 < oo and covariance Cov(X;, Xs) =

E[(X7 — p1) (X2 — p2)]. We call

Oxs X0 = COU(Xl,X2> _ EXlXQ —EXlEXQ c [_1 ” (13)
o 0102 Vv (EX? — E[X1]?)(EXF — E[X,]?) ’

the Pearson correlation coefficient of X; and Xs.

The larger the absolute value of px, x, the stronger the linear relationship between the two
random variables. E.g., the random variables Z and Y := 5 - Z have Pearson correlation
coefficient 1. While independence of X; and X, implies zero linear correlation px, x, = 0,
it is important to note that the reverse does not hold: Pearson correlation coefficient
Px,.x, = 0 does not generally imply that X; and X, are independent; the two random
variables may be correlated without any linear effect [39, p. 158].

2.4 Impact of Correlation on DP

Kifer et al. [26] show that the privacy guarantees that are often colloquially attributed to
e-DP algorithms do not formerly hold if records in the data are correlated with each other.
They define the goal of a private algorithm as “Can it limit the ability of an attacker to
infer that an individual has participated?” [26, p. 194]. The authors find that whether an
e-DP algorithm fulfills this goal depends on the records in the data being independent. We
have adapted the following social network example from [26] to demonstrate a situation
in which a DP algorithm does not fulfill this guarantee. Here, the presence of a single
edge (i.e., a friendship between two users) is private and its participation in the network
is supposed to be concealed.

Example 1. Caroline uses a social network. Each user is represented as a node, and each
friendship is an edge between two nodes. Caroline becomes friends with Peter and subse-
quently, Caroline introduces her friends to Peter. As a result, multiple other friendships
(i.e., edges) form between Peter and friends of Caroline (see Figure 2). Thus, these new
edges are correlated with the edge between Caroline and Peter. The social network al-
lows analysts to submit counting queries of the number of edges between groups of users.
These queries are answered in a differentially private manner so that the presence of a
single edge cannot be distinguished. L.e., in this case two databases are neighbors if they
differ in a single edge. This is a variant of DP known as edge-differential privacy [20]. An
adversary queries the network for the number of edges between (a) Peter and (b) Caroline
and her two friends. The adversary can easily distinguish the scenario in which Peter and
Caroline are friends (query outputs '3’ with noise) from the scenario in which they are
not (query outputs ‘0’ with noise) because more than one edge is affected.

Caroline may consider her friendship to Peter private information and her privacy has
been violated by the adversary. Here, DP does not properly capture the privacy leakage
of the data analysis because more than one edge is affected by the participation of a
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Friend #1 of Caroline Friend #1 of Caroline

Caroline Peter Peter

Friend #2 of Caroline Friend #2 of Caroline

Figure 2: A social network represented as a graph. An edge is red if it is new. First,
Caroline becomes friends with Peter (left network). Then, Caroline introduces her
friends to Peter and they also become friends (right network).

single edge. Indeed, multiple studies have shown successful privacy attacks against DP
algorithms when correlations are present [22, 26, 32].

Kifer et al. also discuss the difficulty of properly measuring the privacy leakage related
to the evidence of participation. They restate the impossibility result by Dwork and
Naor [13] that protecting against all inferential privacy threats and still providing useful
global statistics is not achievable. This is exemplified by Free-lunch privacy [26]:

Definition 2.10 (Free-Lunch Privacy [26]). A randomized algorithm A is called e-free-
lunch private, if for any two data sets Dy, Dy € X" and any measurable set S, we have

Pr[A(D,) € S] < e - Pr[A(Ds) € S]. (14)

For a sufficiently small ¢, this notion ensures the indistinguishability between any two data
tuples. An e-free-lunch private algorithm would protect against any privacy attack from
any adversary. However, this also means that no utility can be gained from an e-free-lunch
private algorithm because almost all information is obscured by noise [26].

2.5 Bayesian Differential Privacy

The privacy notion Bayesian differential privacy [55] also addresses the shortcomings of DP
on correlated data. However, instead of always requiring indistinguishability, it depends on
the adversary’s prior knowledge of the data tuple. BDP is defined in two steps: First, we
define the Bayesian differential privacy leakage (BDPL), a measurement of the maximum
privacy violation an algorithm can cause. Subsequently, a BDP algorithm is defined as an
algorithm whose BDPL is limited.

16



UNIVERSITAT POLITECNICA
DE CATALUNYA \
BARCELONATECH oo

Karlsruher Institut fiir Technologie

Definition 2.11 (Bayesian Differential Privacy Leakage [55]). Let random vector X =
(X1,...,X,)" € X" follow distribution 7. Let A : X™ — ) be a randomized algorithm
whose input data is drawn from 7. Let ¢ € [n] be the index of the targeted record by the
adversary and let K C [n]\ {i} be the indices of records that are known to the adversary.
Then the adversary-specific Bayesian differential privacy leakage of A is

PrlY € § | Xy = xp0, X; =
BDPLycy= sup Inont €51 X =xg 4=

. 15
x4,x) X, S PI‘[Y S | XK = XKaXz' = JZ;] ( )

If the data domain is equivalent to the real numbers (i.e., X" = R"), Yang et al. [55]
define a slight modification where the difference between z; and 2} is limited by a real
number M € R:

PI’[Y €S | XK = XKyXi = 1’7,]
BDPLs =  sup  In
(K3) |xi_x;|S]I\2,XK’S PT[Y - S | XK = XK7Xi — l’;]

(16)

If the output Y of algorithm A has a continuous density py, then Equation (15) is equiv-
alent to the following formulation with the density:

py(s | Xg =xk, X; = 1)

BDPLigx;= sup In 17
(#3) a:i,x;,)lc)K,s pY(S | XK = XK, Xz = .I;) ( )
In any case, the Bayesian differential privacy leakage of algorithm A is
BDPL = sup BDPL k. (18)
Ki

The BDPL has a similar role to the privacy leakage ¢ in DP: It measures the extent of
a possible privacy violation by comparing the difference in the output probabilities of
algorithm A. A lower BDPL corresponds to higher privacy because an adversary will be
less likely to differentiate the two situations compared in Equation (15). The BDPL is
directly used to define e-BDP:

Definition 2.12 (Bayesian Differential Privacy [55]). Algorithm A : X" — ) is an
e-Bayesian differentially private algorithm if and only if BDPL < e.

The authors show that BDPL can be reformulated as the change between the prior odds
of the adversary’s belief of the value of a record, and the posterior odds [55, p. 752]:

BDPLk; = sup

!
4,25, XK ,S

(ln PriX; =u; |Y € 8, Xk =xx] In Pr[X; =u; | X = XK])
PriX; =2} | Y € S, Xk = xk] PriX; =2} | Xg = xk]
(19)
The left ratio shows the odds of record ¢ having value z; versus value 2, after the output
Y is known to the adversary (posterior belief). The right ratio shows these odds before
the output is known (prior belief). However, in both cases the adversary can use their
knowledge of the records x.
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2.5.1 Utility

Yang et al. [55] find that utility of a BDP algorithm is poor under certain circumstances.
They assume that correlation behaves according to a so-called Gaussian correlation model
and that a sum query is made private with Laplacian noise with scale A\. Then, the
Bayesian differential privacy leakage grows linearly in n: BDPL = n/\. The authors
conclude that utility is too low under these assumptions because the scale A of the noise
would have to be n times larger to provide sufficient privacy guarantees. Consequently,
they expand their Gaussian correlation model by adding uncertain prior knowledge of the
values of all records. In their experiments, the authors show that the BDPL of a Laplace
sum query is reduced if the adversary has higher a priori certainty of all records. This
improves utility as the scale of noise A no longer needs to be multiplied by n, but by a
smaller factor.

Note that their Gaussian correlation model is not to be confused with the multivariate
Gaussian correlation model we investigate in Section 6. Yang et al. assume that the
conditional distributions of the random variables is Gaussian; the joint distribution is
not necessarily a Gaussian. This is different to our assumption in Section 6: We directly
assume a joint Gaussian distribution.

2.5.2 Relationship between DP and BDP

Yang et al. prove that e-BDP always implies e-DP. Conversely, they also show that e-DP
implies e-BDP if all records are independently sampled. However, they do not prove any
implication from DP to BDP if there is correlation present.

Zhao et al. [57] consider the situation when data follows a Markov chain. They show that
e-DP implies ¢(¢)-BDP with

PriXo=2|X; =
q(e) = ¢ + 61lnmax e =2 [ Xy =y

. 20
vyy PriXo=a | X; =] (20)

The BDPL depends on the privacy loss € of the DP algorithm, and the maximum ratio
between different transition probabilities to the same state in the Markov chain. This
result should be met with caution because the workshop paper by Zhao et al. has not
been peer-reviewed and the proof is not available. However, we have chosen to include it
here because it applies to the same assumptions that we make in Section 7 on Markov
chains. We will also prove an upper bound on the BDPL, and show that it improves on
the result of Zhao et al. in certain situations.
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3 Problem Statement

This section presents the problem statement and how we aim to solve it. The main research
questions are “What utility can BDP algorithms achieve when we make no assumptions
about the correlation within the data? What utility can be achieved when a certain
correlation model is assumed?” These questions are important for two main reasons:

(1) The theoretical utility guarantees of BDP algorithms are unclear in many situations.

(2) BDP may be subject to the impossibility result by Dwork and Naor [13] that states
that a privacy notion which limits prior-to-posterior changes in any beliefs of the
adversary cannot provide utility. Yang et al. [55] have shown that BDP does limit
the change in prior odds to posterior odds for the value of single records in the data
tuple. Thus, it needs to be investigated whether the impossibility result applies here,
or under which situations.

3.1 Methodology

Here, we explain our methodology to investigate our research questions. It consists of
theoretical proofs, simulations and a utility experiment.

3.1.1 Theoretical Proofs

In this thesis, we mainly answer the research questions via novel theoretical proofs. This
is advantageous to a purely empirical study: In experiments, utility can only be tested for
a limited number of algorithms and data sets. In contrast, a valid theoretical proof covers
any situation that falls under the assumptions of the proof.

We quantify utility with («, §)-accuracy. Utility is improved when accuracy is improved,
i.e., if the error « or its probability [ is reduced. Our proofs answer the research questions
from two perspectives:

(1) We show that there exists a BDP algorithm that fulfills («, §)-accuracy for certain
values of a and . This is achieved by proving the relationship between the DP
privacy leakage and the BDPL. L.e., we prove that an e-DP algorithm is also a ¢(¢)-
BDP algorithm for a certain function ¢. This allows us to reduce the accuracy of
certain BDP algorithms to DP algorithms. Then, we can use accuracy results of DP
algorithms to prove accuracy results of BDP algorithms.

This method is applied to arbitrary correlation models in Section 4, genomic data
in Section 5, a multivariate Gaussian correlation model in Section 6, and to data
following a Markov chain in Section 7.

(2) We prove that any BDP algorithm must have some minimum error  with min-
imum probability . This shows that BDP algorithms cannot give high accuracy
guarantees in certain situations. It involves proving that Definition 2.12 of BDP
stands in contradiction to («, §)-accuracy for certain correlation models. We apply
this method to arbitrary correlation models and genomic data.
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3.1.2 Simulations

In this subsection, we explain why and how we use Monte Carlo simulations to estimate
the BDPL of DP algorithms. Our theoretical analysis involves proofs of the upper bound
on the BDPL ¢(¢) of an e-DP algorithm for various correlation models. Initially, we do
not know how tight these upper bounds are with respect to the real BDPL, i.e., it may be
possible that e-DP algorithms are actually ¢'(¢)-BDP, with ¢/(¢) < ¢(¢). In our proofs, we
use the function ¢(¢) to calculate the accuracy of e-BDP algorithms compared to e-DP
algorithms. If the increase in privacy leakage when moving from DP to BDP is actually
lower than ¢(g), then improved utility guarantees of e-BDP algorithms are still possible.
Thus, the tightness of these bounds is of interest to our research questions: If they are
not tight, then higher utility BDP algorithms remain achievable.

Thus, for each possibly untight bound, we perform a Monte Carlo simulation [34, p. 123]
to estimate the output distribution of an e-DP algorithm A. Then, we can calculate its
empirical BDPL, giving us an intuition about the tightness of our bounds. Specifically,
we estimate the distribution of the outputs of algorithm A in the two situations that are
compared by BDPL (see Definition 2.11). The estimation evaluates the adversary-specific
BDPL for 1000 adversaries. In each of the 1000 cases, we do the following:

1. Pick a random adversary: A random number generator chooses a target index i € [n]
and its possible values z;, 2} € X', a number of known records k € [n—1], their indices
K C [n] and their concrete values xx € X*.

2. The values of the remaining unknown records are randomly drawn from the data
distribution, with condition Xy = xx and X; = x; or X; = 2} respectively. This
is repeated 100000 times in both cases, for z; and z} respectively. We end up with
100000 possible data tuples D € X™ in each case.

3. For each data tuple D, we sample one possible output of the DP algorithm A.

4. Now, there are 100000 possible outputs of A. To estimate the BDPL, we have to
estimate the probability density of the output distribution of A. We do this twice,
once for X; = z; and once for X; = x;. We apply state of the art kernel density
estimation (KDE) [4] using the Python implementation fastKDE [38].

5. We need to evaluate the probability densities at certain points. For this, we pick
1 000 random samples ¢ between the 0.5% quantile and 99.5% quantile of the outputs
of A. We do not evaluate the tails of the KDE because the results here are very
unstable: The low density means only few outputs are sampled here and the KDE
cannot give a good estimation.

6. For each sample ¢, we evaluate the density for X; = x; and the density for X; = !
and take the ratio of the two results. The natural logarithm of that ratio is the
BDPL for this specific point ¢.

7. We now have 1000 estimations of the adversary-specific BDPL of this adversary.
Since the adversary-specific BDPL is a supremum, we take the maximum of these
estimates as the empirical adversary-specific BDPL of this adversary.
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8. Finally, we have empirical estimates for the adversary-specific BDPL of 1000 dif-
ferent adversaries. We sort these estimates from minimum to maximum and pick
the 99th percentile as our estimate for the total BDPL for this n and p. We use
the 99th percentile instead of the maximum to make the result more robust: Dur-
ing testing, the estimate of an adversary-specific BDPL would rarely be exception-
ally high. These rare results were not repeatable: Estimating the adversary-specific
BDPL for the exact same adversary with the same data distribution and the same
known values would yield a much lower adversary-specific BDPL. In contrast, the
adversary-specific BDPL estimates around the 99th percentile were repeatable.

This estimation represents a lower bound for the maximum possible BDPL. The actual
BDPL is a supremum over an infinite number of possibilities, from which we can only
sample a finite subset. Additionally, to ensure robust results we did not sample the tails
of the probability densities and chose the 99th percentile as the estimate for the maximum.

3.1.3 Utility Experiment

While we have previously highlighted the advantages of theory compared to empirical
results, it is nonetheless important to measure the effect of our findings on the utility
of BDP algorithms on real-world data. This allows us to verify that our results improve
utility of BDP algorithms in actual applications.

For our utility experiment, we choose data sets that correspond to the correlation models
analysed in our proofs (i.e., genomic data, data with a multivariate Gaussian correlation
model, or data from a Markov chain). Then, we use our proofs on the relationship between
DP and BDP to use DP algorithms for counting queries or sum queries as BDP algorithms.
Here, we measure utility by calculating the mean squared error of the output from the
BDP algorithm to the output from the deterministic counting or sum query.
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4 Arbitrary Correlation Model

We begin by presenting our results when data has an arbitrary or unknown correlation
model. The British statistician George E. P. Box wrote in 1978 “all models are wrong” [6,
p. 202], describing the fact that any statistical model can only be an approximation
of the real world. Even conceding this limitation, it may not be clear whether a given
statistical model is an appropriate approximation for the distribution and correlation of
a data tuple [45, p. 214]. In these cases, it would be beneficial to still use BDP to hide
the influence of possible correlation, however without any assumptions or with only very
limited assumptions about the correlation. Unfortunately, this is a futile attempt: We
present an impossibility result that BDP algorithms cannot guarantee privacy against
arbitrary correlation models, and provide utility at the same time.

First, Theorem 4.2 proves the general bound: An e-DP algorithm is me-BDP where m
is the number of correlated records in the data tuple. For arbitrary correlation, we have
to assume that the entire data tuple may be correlated, i.e., m = n. Thus, a satisfactory
privacy-utility trade-off via a DP algorithm under arbitrary correlation is not viable for
sufficiently large data tuples. Here, we also explore the idea of limiting the Pearson correla-
tion coefficient p of the data distribution. We hypothesized this could consistently reduce
the BDPL of an e-DP algorithm below the general bound me. However, Theorem 4.3
shows a counterexample where the general bound is tight, even though p is bounded.

Second, we prove in Corollary 4.8 that any e-BDP algorithm — not just an adapted DP
algorithm — must have bad utility if it protects data with arbitrary correlations. Finally,
in Section 4.3 we come to the conclusion that more assumptions have to be made about
the correlation — such as a model of the distribution of the data — to give satisfactory
utility guarantees of BDP algorithms. After all, the full quote by Box reads “all models are
wrong, but some are useful” [6, p. 202] (emphasis mine). We will explore such models in
the subsequent sections on Genomic data, data with a multivariate Gaussian correlation
model, and data following Markov chains.

4.1 Relationship between DP and BDP

First, we introduce and prove the general bound of the BDPL of an e-DP algorithm. We
will refer back to this result many times in the thesis, to compare improved bounds in spe-
cific situations. The general bound states that if we have an e-DP algorithm A that takes
data drawn from a distribution with at most m correlated random variables, then that
algorithm A is me-BDP. Multiplying the DP privacy leakage by the number of correlated
records to determine the maximum privacy leakage against attacks exploiting correlations
has been a common practice [10, 32]. However, to the best of our knowledge, this method
has not previously been proven to fulfill the privacy notion BDP. We address this knowl-
edge gap. Our proof is more involved than previous results on this subject because Chen
et al. [10] do not formally prove any privacy guarantees, and Liu et al. [32] only do so
when considering linear correlation. In contrast, our proof holds for any correlation model.

We formally define what we mean by m correlated random variables. We split the random
variables X7, ..., X, into mutually independent subsets with maximum size m:

22



UNIVERSITAT POLITECNICA \‘(IT
DE CATALUNYA \

BA R C E LO N AT ECH Karlsruher Institut fiir Technologie

Definition 4.1. We say the random vector X = (Xi,...,X,)" has at most m < n
correlated random variables if all of the following conditions are fulfilled.

e There exist disjoint sets of indices C4, ..., C, that make up [n] = J,_, Ci.
e Each set C) has maximum cardinality m > |C)| for any [ € [r].

e For any [ € [r], the random variables { X, | j € C;} are independent of the remaining
random variables {X; | j € [n]\ C/}.

Now, we prove the bound in two steps: First, we show in Lemma 4.1 that the ratio
considered in the definition of BDPL can always be upper bounded by including more
random variables in the condition. This will be useful to prove Theorem 4.2, where we
limit the change of a single random variable X; by changing all of its correlated random
variables X¢.

Lemma 4.1. Let Y € ) be a random variable and let X = (X;,...,X,)" € X" be a
random vector. Let ¢ € [n] be an index, set K C [n]\ {i} comprise the known indices, and
set C' C [n] \ K with index i € C' comprise the correlated indices. Then, we have

sup [YGS]XK:XK,Xi:xi]< sup PrlY € S| Xk =xx, X =X
X

S, PTY € S| X = xpe, Xy = 2] SXKX X PrlY € S| Xk =%k, X5 =

Proof. We prove the lemma by showing that for any values of z;, 2} € X and xxx € X Kl
we can find x5 € Xl so that the numerator of eq. (21) is greater and we can find
x’é € X!€ 5o that the denominator is smaller. We show this via proving a contradiction.

Assume that for all x5 € X |é|, we have
PrlY € S| Xg =xk,X; = ;] > Pr]Y € S| X = xx, X5 = x5 (22)

Now, we bring this to a contradiction, thereby proving the opposite of eq. (22). Let index
set C_; := C'\ {i} include all indices of C' except for 7. Then, we have

= /lé ‘Pr[Y€S|XK =xg,X; = 2;, X = Xg_ ] PX, (x| Xk = x5, X = ;) dxg_
xC—i i

(23)
- /Xlé_i PrlY € 5| Xk = xx,Xe = (21, %x6_,)] Pxé_i(xé,,. Xi = x;)dxg

(24)
< /X‘|éi PrlY € S| Xk = xk, Xi; = 7] pxé_i(xéli Xk =Xk, X; = ;) dxe (25)
=Pr[Y € S| Xk =xx, Xi = x4 /Xé‘_il pxéii(xai X; = x;)dxg (26)
=Pr[Y € S| Xk =xx, Xi = 1] (27)
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First, we use the law of total probability to introduce all remaining random variables with
indices in set C' in eq. (23). Random variable X; is already included in the condition, so
only indices C_; need to be added. In eq. (24), we combine the two conditions X; = z; and
X¢a . = Xg . into one condition X = (7, %4 ). Notice that this is the same condition,

just stated differently. Then, we use eq. (22) — which applies to all x5 € X 1€l —in
eq. (25). Now, the first probability can be pulled out of the integral in eq. (26) as it
no longer depends on the value x5 .. The final eq. (27) follows because a probability
density integrated over its entire domain is always 1. Overall, we have shown that the
initial probability from the left-hand side of eq. (23) is strictly smaller than itself — a
contradiction. Thus, the opposite of our assumption in eq. (22) must be true and there
must exist a vector xs so that

PrlY € S | Xk =xk, X; = 2] < Pr[Y € S| Xi = xk, X5 = x¢]. (28)

Analogously, we can show that there exists a vector X’C~ € X! with the opposite property

PrlY € S| Xk =xg, X; = 2] > Pr[Y € S| Xk = xk, X5 = X¢]. (29)

Thus, with eq. (28) and eq. (29) we have

< Pr[Y€S|XK:xK,Xi::UZ-]< < PrlY € S| Xk = xk, X5 = x¢g]

u u .

S,xx,g,m; PrlY € S| Xg =xk, X; =2} — S,xK,sz,x’é PrlY € S| Xk = xk, Xp = X/@]
(30)

For any values of xx and z;, z} included in the left supremum, we can always find values
X and x’é so that the ratio becomes greater or equal, and these values x4, X/C, are included
in the supremum on the right-hand side. O]

Using Lemma 4.1, we prove the general bound in Theorem 4.2.

Theorem 4.2 (The General Bound). Let n € N be the size of the data tuple. Let
X = (X1,...,X,)" be arandom vector with at most m < n correlated random variables
that follows a distribution 7. Then, any e-DP algorithm A with input data drawn from
distribution 7 is me-BDP.

In the following proof of the general bound, we will limit the adversary-specific BDPL
of any adversary by me, thereby showing that algorithm A is me-BDP. For an arbitrary
adversary, the idea is that we can always increase the BDPL by not just changing the
target X;, but by also changing all of its correlated random variables in Cj. To show this,
we use Lemma 4.1. Then, we can prove that the BDPL must be bounded by me because
of the independence of X¢, from the rest of the random variables, and because changing
m records X, results in a DP privacy loss of me.

Proof. Consider any adversary (K, 7) with i € [n] and K C [n]\{i}. We begin by applying
Lemma 4.1 and show that an upper bound for the adversary-specific BDPL can be found
by conditioning on all of the random variables that are correlated with target X;. First,
we must identify the random variables correlated with X;. There is an [ € [r] so that we
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have target index i € Cj, because C1, ..., C, partition the entire set [n]. Thus, C; contains
the index ¢ and all indices of random variables potentially correlated with X;. Let set
C = \ K be the indices of random variables correlated with X; that are not already
included in K, and let random variable Y denote the output of algorithm A. Then, the
adversary-specific BDPL can be upper bounded directly with Lemma 4.1 as follows:

PI‘[Y es | Xg =Xg, X; = $1]

BDPL( ;) = } o
(D stxufx’ ! PrlY € S| Xk = xg, Xi = 2] o
< sup PrlY € 5| Xk = xx, Xo = X (32)

= n
S’XK7XC7X,C", PI“[Y & S | XK — XK7XC7 — X/C",]

Now, we will show that eq. (32) is further limited by me. We achieve this by limiting
the multiplicative difference between the numerator and the denominator. Let the set
U = [n] \ (K UC) include all remaining indices. Let the known values x; € X%l be
arbitrary, and let the correlated values x5 € X € and x’é € X!l be arbitrary. We have

Pr[Y € S | Xi = xx, Xg = X
:/XU PrlY € S| Xk = xg, X = xg, Xu = xu| px,(Xv | Xk = Xk, X5 = xg) dxy
(33)
§/ e PrlY € S|Xk = xx, X = Xz, Xy = xp] px,(xv| Xk = Xk, X5 = Xg) dxy
o (34)

= / | Prly € 5| X = xx, X = x¢, Xy = xv] px,(xv | Xk = xx) dxy (35)
x

XUl

(36)
=™ PrlY € 5| Xk = xg, X5 = x5 (37)
First, we use the law of total probability in eq. (33) to include the remaining random
variables. In eq. (34), we use the group privacy property of DP [15, p. 20] to show that
the probability distribution of the output changes at most by €™ if at most m entries in
the data tuple change. Here, it is important that ]C’ | < m has at most cardinality m. Then,
we apply the independence of random variables {X; | j € C} and the unknown random
variables {X; | j € U} in eq. (35) to remove a condition. These two sets are independent
because they are subsets of two independent sets of random variables: {X; | j € C}} and
{X; |7 € [n]\ Ci}. Similarly, in eq. (36) we add the condition X5 = x7; because of the
independence. Note that the value of the correlated random variables has now changed
from x4 to X/C,, but this has not had an effect on the probability density px, because of
the independence. Finally, we apply the law of total probability in reverse in eq. (37).
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Now, all is ready to limit the total BDPL for algorithm .A:

BDPL = sup BDPLx (38)
K

PrlY € S| Xk = xk, X5 = xg|

< su su n 39

- K,Ii) S,xK,xI;,x’é PI‘[Y €S | XK = XK7XC’ = X/Cr] ( )
e PrlY € S| Xk = xg, X5 = x|

<su su In ¢ 40

- K,E) S,xK,xI;,x/é PI‘[Y S | XK = XK7XC' = X/CY] ( )

=sup sup Ine™ =me. (41)

!

K SXK XX,

First, we use eq. (32) in eq. (39). Then, we apply eq. (37) in the numerator of eq. (40).
Subsequently, the ratio is shortened and the suprema are redundant as the bound no
longer depends on those values.

We have bounded the BDPL of algorithm A to me. Thus, algorithm A is me-BDP. [

Now, we have the general upper bound on the BDPL of an e-DP algorithm as me, where
m is the number of correlated records. We will see in Corollary 4.4 that this causes an
m-fold increase in the error @ when using the Laplace mechanism and moving from e-DP
to e-BDP. This proportional increase in the error can be detrimental to utility, especially
if all n = m records are correlated.

The general bound appears to imply that changing a single record has a completely
deterministic effect on the remaining m — 1 correlated records. However, the strength
of the correlation in a real world scenario may not be that pronounced. Therefore, we
hypothesized that limiting the Pearson correlation coefficient p between records would
result in a smaller bound for the BDPL, and therefore also better utility guarantees
when moving from DP to BDP. However, Theorem 4.3 shows a counterexample where the
general bound is tight, even if p > 0 is limited to be arbitrarily small. This proves that it
does not suffice to limit p to create high-utility BDP algorithms from DP algorithms.

The following counterexample concerns data tuples of size two where the two records
are correlated. Thus, the general upper bound of the BDPL of an e-DP algorithm is 2¢.
Theorem 4.3 applies to algorithms A that make “full use” of their available privacy budget
g, i.e., see Equation (42). An example of such an e-DP algorithm on the domain {0, 1}?
would be a sum query with Laplacian noise of scale %

Theorem 4.3. Let X = (X}, X5)" be a random vector. Let A : {0,1}?> — Y be an e-DP
algorithm with input data drawn from the distribution of X. Let S C ) be a measurable
set so that A reaches the maximum allowed privacy leakage, i.e.,

Pr[A(0,0) € S] = e - Pr[A(0,1) € S] = €° - Pr[A(1,0) € S] = e* - Pr[A(1,1) € S]. (42)

Then, for all p > 0 and for all 6 > 0 there exists a probability distribution 7 with the
following property: If random vector X follows distribution 7, then the Pearson correlation
coefficient px, x, < p of random variables X; and X, is bounded, and the Bayesian
differential privacy leakage is at least BDPL > 2¢ — 0.
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X1=0 X;=1
Xo=01|p l—a—-p|1—-«
Xo=11]0 « «
6] 1-p 1

Table 2: Joint probability distribution of random variables X; and Xs.

Proof. Let r € N be arbitrary. Table shows a valid probability distribution 7 for X =
(X1, X2)" with @ := =1 and § := . In order to prove the theorem, it suffices to show
that the correlation coefficient le,Xz — 0 tends to zero and the Bayesian differential
privacy leakage BDPL — 2¢ tends to the general upper bound for » — co. We begin
with the Pearson correlation coefficient. The variances of X; and X, are denoted by
0%, = B(1 = p) and 0%, = a1 — «) respectively.

_E[X,X) —E[X\JE[X)]  a- a(l ~B) aﬁ
P X 0X,0X, \/5 1-B)a(l —a) \/5 1-8)a(l —a)

B \/(1 —B)(1—a) \/ R :2_—11 e (44)

Let random variable Y represent the output of A. With Definition 2.11 of BDPL, the
following holds as well:

(43)

Pr[Y € S| X; = 0]

BDPL >1 4
=Py eS| X, =1 )
1 2aseoy PIIY € 5[ X1 = 0,5 = 2] - Pr[Xy = 2 | Xy = 0] (46)
= 1n
Yomepony PTY € 5[ Xi =1, X5 = 2] - Pr[Xy = 25 | Xy =1
:mpmuameﬂ-£§%%%—+Pmua)eﬂ Pl 20 )
PrlA(1,0) € S] - P b0l 4 Pr{A(1, 1) € §] - Pt
| e* - PrlA(1,1) € S]- 5+ ¢ - PrlA(1,1) € 5] - § (48)
=1In
es - PrlA(1,1) € 8] - 15257 + Pr[A(1,1) € 8] - 123
625(1—5)
=1 4
N (1-—a—-p0)+a« (49)
_ 1
=2 +1 L 50
€+ neg(l—%—r%)%-rr;l ( )
7’2—1 r—00
=92 +1In 2¢ +1Inl = 2¢ (51)

e(r—1)+r2—r

First, we use that the BDPL is defined as the supremum over all adversary-specific BDPLs.
Thus, any adversary-specific BDPL is a lower bound for the total BDPL. In eq. (45) we
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choose the adversary that targets record ¢ = 1 and does not know any other records. In
eq. (46), we use the law of total probability. Then, we explicitly write down the terms of
the sum in eq. (47). Conditional probabilities have been rewritten with the rule

Pr(An B)

Pr(A | B) = =Pl

(52)

In eq. (48), we use the probabilities from Table 2 and use eq. (42). Subsequently, we
simplify the ratio in eq. (49) by dividing numerator and denominator by the probability
Pr[A(1,1) € S| and multiplying both with 1 — 8. Overall, we see that the BDPL is
greater than a term that approaches 2e for r — oo. We know that the BDPL for an
e-DP algorithm is limited by 2¢ because of the general bound me: Here, two records are
correlated and we have m = 2. Thus, the BDPL also approaches 2¢ because there is a
lower and an upper bound that both approach 2e. O]

Theorem 4.3 shows that for arbitrary correlation models, the general bound from The-
orem 4.2 is tight, even if we limit Pearson correlation coefficient p. Therefore, we will
explore additional assumptions on the correlation in later sections on genomic data, data
with a multivariate Gaussian correlation model, and data following a Markov chain. This
will enable us to improve upon the general bound, in contrast to only limiting p.

4.2 Accuracy

Before we explore specific correlation models, we investigate the concrete accuracy state-
ments that can be made for BDP algorithms under arbitrary correlation. First, we do so
for DP algorithms that are used as BDP algorithms, and subsequently we investigate the
accuracy of any BDP algorithm.

The general bound on the BDPL of an e-DP algorithm enables us to use DP algorithms
as BDP algorithms. In cases where there exist utility guarantees of DP algorithms, we can
use these results for the resulting BDP algorithms. Corollary 4.4 shows the increase in the
error & when going from e-DP to e-BDP for algorithms using the Laplace mechanism.

Corollary 4.4. Let n € N be the size of the data tuple. Let X = (X1,...,X,)" be a
random vector with at most m < n correlated random variables that follows distribution
7. Let function f : X" — R be deterministic with finite sensitivity Af < oo. Then, if
the Laplace mechanism M, ¢ fulfills («, f)-accuracy, there exists an e-BDP algorithm B
whose input is drawn from 7 and that is (ma, 8)-accurate w.r.t. f.

Proof. From Corollary 2.2, we know that the (o, §)-accuracy of M, ; with respect to f is
1\ A

for any 3 € (0, 1] because algorithm M, s uses the Laplace mechanism.

The idea is to also use the Laplace mechanism for algorithm B, but to use an adjusted DP
privacy parameter €’ so that B is e-BDP. We will see that this results in (ma, §)-accuracy.
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Figure 3: Probability of error o« = n/2 of e-BDP counting query using Laplace
mechanism under an arbitrary correlation model. The x-axis shows the BDPL ¢, the
y-axis the probability 5 of an error greater than o = n/2.

With the general bound from Theorem 4.2, we know that the algorithm B is me’-BDP.

Thus, we have

1
me'=¢ & ¢ =—¢ (54)
m

Now, we can calculate the accuracy of algorithm B because it also uses the Laplace
mechanism and we now know the used DP privacy leakage ¢/ = ¢/m. Algorithm B is
(«/, B)-accurate with

o =In (%) : g =In (%) . mff = ma. (55)
Thus, algorithm B is (ma, [)-accurate. ]

This result shows that the error a of the Laplace mechanism increases proportionally with
the number of correlated records when moving from e-DP to e-BDP, and while making
no assumption about the distribution of the records. In a situation where the number of
correlated records cannot be limited, we have to assume the worst-case scenario that all
n = m records may be correlated. This can make a BDP algorithm have little utility:
For example, consider a counting query g, i.e., a query that counts the number of records
which fulfill some predicate. Function g must return a number between 0 and n and has
sensitivity Ag = 1. Figure 3 shows the probability 8 of an error that exceeds o = n/2 if
we use the Laplace mechanism M., , to create an e-BDP algorithm. The probability of
this large error — half the range of the function — is 60% for e = 1. Even for a high privacy
leakage ¢ = 5, it is nearly 10%.

We see that e-BDP algorithms using the Laplace mechanism do not offer a good privacy-
utility trade-off when all n records are correlated with an arbitrary model of correlation.
This does not rule out that it may be possible to create “native” BDP algorithms with
a better privacy-utility trade-off, without using existing DP algorithms or the Laplace
mechanism. However, we will now show that any BDP algorithm that protects against
arbitrary correlation cannot offer good utility.
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We show that BDP is reduced to free-lunch privacy (see Theorem 4.5) when the correlation
model can be arbitrarily chosen. For free-lunch privacy it is known that good utility is
impossible [26]. However, this impossibility result has not yet been stated in terms of
(o, B)-accuracy, which we use to quantify utility in this thesis. Therefore, we expand on
the impossibility result by proving Theorem 4.6 and Corollary 4.7 which provide a lower
bound for the error « of a free-lunch private algorithm. Then, we can derive a lower bound
of a for BDP algorithms under arbitrary correlation in Corollary 4.8.

Theorem 4.5. Let D, D’ € X™ be any two tuples. Then, there exists a probability
distribution 7 over the data tuples X™ so that both D and D’ have non-zero probability
and any e-BDP algorithm A : X* — R is e-free-lunch private, where X» C X" denotes
the set of data tuples with non-zero probability.

Proof. Let X = (X1,...,X,)" be a random vector. We will now construct a probability
distribution m with X ~ 7 so that algorithm A is e-free-lunch private. We differentiate
between two cases: Either D, D" are the same tuple, or they are two differing tuples.

Case 1: The tuples D = D’ are identical.

In this case, it suffices to choose a probability distribution m where D has probability 1.
Then, X" = {D} will only include D and the algorithm is trivially e-free-lunch private.

We choose the following probability distribution. For any D € X" we have

Pr[X = D] := 1{D = D}. (56)

In order for A to be e-free-lunch private, the following inequality must hold for any
Dy, Dy € X™ and any measurable set S C R:

Pr[A(Dy) € S] < ¢ Pr[A(Dy) € 9] (57)

This inequality is trivially fulfilled since we have Dy = Dy = D. Thus, algorithm A is
e-free-lunch private.

Case 2: The tuples D # D’ are not identical.

The idea of the proof in this case is to choose a probability distribution 7 so that the values
of all other random variables are determined by just one random variable X;. Then, D
and D’ become “neighbors” in the definition of BDP, i.e., they must be indistinguishable
up to a factor of e. This is equivalent to the definition of e-free lunch privacy.

More precisely, we represent the data tuples D,D’ by D = (zy,...,2,)" and D' =
(x},...,2)". We choose any index i € [n] for which the value z; differs from x} # x;.
There must be at least one such index because D # D’. This record z; will be the record
that is correlated with the entire remaining data tuple in our chosen probability distribu-
tion. To simplify notation, we name the remainders of the tuples x_; and x’ , respectively,

. o T !/ / / / IN\T
with x_; = (z1,...,Ti—1, i1, ..., Tn)  and X', = (2}, ..., 2 1,20, ..., 2)) " .
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We construct a probability distribution 7 with strong correlation, so that all values of the
data set are determined by the single random variable X;:

Pr[X; = 2;] :=Pr[X; = 2}] :=1/2 (58)
PI"[XM\“} = X_; | Xi = $1] =1 (59)
PriXppa =%, | Xi =] =1 (60)

For any other tuple D € X" \ {D, D'}, we set the probability to zero:
Pr[X = D] :=0 (61)

It follows that X = {D, D'} only includes D and D’ because no other tuples have non-
zero probability.

Now, let A : X* — R be any e-BDP algorithm. This means that the adversary-specific
BDPL for any (K, j) is bounded by ¢, for any j € [n] and K C [n]\ {j}. In particular,
the BDPL of the adversary that targets index j = 4 with no known records K = () is
bounded by . We rewrite this fact to fulfill the definition of free-lunch privacy. Let Y be
the random variable that represents the output of algorithm A. For any measurable set
S C R we have

PrlY € S| X; = &)

€> sup In — - (62)
5,551.756; PI‘[Y c S | Xl = i’;]
63
= "Dy €S| X, =/ (63)
_ gy seans DY €5 Xy =% X = 2 DXy =X [ Xi =]
2sean—1 PrY € S| Xppiy = %, Xi = 2] Pr{Xp gy = X [ X = 2]
PYES an: —iaXi:i P D
=In il | Xy = X x]zln r Al )GS]. (65)
PrlY € S| Xy = %X, X = )] Pr[A(D’) € 5]

Equation (62) is the adversary-specific BDPL (see Definition 2.11) of an adversary that
targets index 7 and knows none of the records (i.e., K = ). We have a lower bound of
this adversary-specific BDPL in eq. (63) by choosing set S and target values z; and z}. In
eq. (64) we use the law of total probability both in the numerator and the denominator.
Only a single term of the sum remains in eq. (65): It has probability 1 according to the
chosen distribution in egs. (59) and (60). These terms correspond exactly to the situation
in which the input of algorithm A is D and the situation in which it is D’.

The reverse bound (i.e., D and D’ switch places)

PrA(D) € S]
T

(66)

can be proven analogously. Thus, for all choices of two tuples from the domain xXn =
{D, D'} we have shown that the inequality required by e-free lunch privacy is fulfilled. It
follows that A is e-free-lunch private. n
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Theorem 4.6 will present a lower bound on the error a of any randomized algorithm A
w.r.t. any deterministic function f, if A limits the difference between the output distri-
butions of two different input tuples D, D’. The larger the difference between f(D) and
f(D"), the worse the («, 5)-accuracy of A w.r.t. f must be. Corollary 4.7 will subsequently
show that this means an e-free lunch private algorithm must have a large error a.

Theorem 4.6. Let A Z — R be a randomized algorithm with domain Z. Let € > 0 be
real. Let 0 < 8 < — +1 be real and let f : Z — R be a deterministic function. Let A fulfill
the following inequahty for two D, D" € Z and all measurable sets S C R:

Pr[A(D) € 8]
Pr[A(D) € §]

< €. (67)

If algorithm A is («, §)-accurate w.r.t. f for an error a > 0, then we must have
1
> 51(D) = (D). (68)

The basic idea of the following proof is that algorithm A is forced by eq. (67) to provide
statistically similarly likely results for both input D and input D’. Therefore, it is possible
to show that a low error a would contradict eq. (67).

Proof. We assume that A fulfills a “better” («, f)-accuracy and show that this ends in
a contradiction. Let a > 0 and § € [0,1] be arbitrary with a < $|f(D) — f(D’)| and
B < egil. We assume that A is (a,ﬁ)—acc?rate with respect to f. The (a, f)-accuracy
assumption means that for all data tuples D € Z we have

Pr(|f(D) — A(D)| > o] < 8. (69)

We show that eq. (69) does not hold for D', which is a contradiction.

Pr|f(D") = A(D)| 2 o] = Pr[A(D’) € R\ (f(D') =, f(D') + )] (70)
> Pr{A(D") € (f(D) — o, f(D) + a)] (71)

> e - PrlA(D) € (f(D) — a, f(D) + )] (72)

(1= PrlAD) e R\ (f(D) — o, (D) +)])  (73)

(74)

(75)

(76)

=e -

=e - (1=Pr[|f(D) — A(D)| = o) 74

>e - (1-5) 75
. ,ec+1 1

¢ (65—1—1 €E—|—1) 76
1

S (77)

> [ (78)

Observe that the first equality in eq. (70) holds: The distance between A(D’) and f(D’) is
greater or equal to « if and only if A(D’) is any real number outside of an a-range around
f(D"). Equation (71) follows because the probability of a subset is always smaller or equal
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.......... :(f(D) —a,f(D) + )

If (D) = f(DO)]
A
: \

_-wm-_----F--P———_———_———_———V
f(D) f(D)

— — R\ (f(D) —a, f(D") + a)

Figure 4: Visualization of sets in egs. (70) and (71).

to the probability of the greater set. Here, this subset relationship (f(D)—a, f(D)+a) C
R\ (f(D") —a, f(D')+«) holds because « is smaller or equal to half the distance between
f(D) and f(D’) (see Figure 4). This probability can once again be limited in eq. (72)
by using the fact that A is forced to provide statistically similar result for D and D’
(eq. (67)). The probability is replaced by its complementary probability in eq. (73). The
transformation to eq. (74) uses the same technique as eq. (70) (see above). Finally, we use
that A is («, f)-accurate in eq. (75) and subsequently replace § by its upper bound in
eq. (76). Overall, it follows that Pr[|f(D") — A(D')| > a] is strictly greater than . This
is in contradiction to («, 3)-accuracy.

We have shown that this («, §)-accuracy is impossible under the given assumptions, as it
leads to a contradiction. The additional assumption we made was a < 1|f(D) — f(D’)],
which therefore must have been false. Thus, we have

o> JIf(D) ~ (D). (79)

O

Now, we can use Theorem 4.6 to show a lower bound for the error a of any e-free lunch
private algorithm w.r.t. any function f. This lower bound will be comparatively high
because we can choose D and D’ to maximize the distance |f(D) — f(D’)].

Corollary 4.7. Let A: Z — R be an e-free-lunch private algorithm with domain Z. Let
0<pB8< ﬁ be a real number and let f : Z — R be a deterministic function with finite
sensitivity Af < oo. If algorithm A is («, B)-accurate w.r.t. f for an error a > 0, then

o> max| f(D) — F(D)]. (30)

D.D

We will prove Corollary 4.7 by choosing two tuples D, D' that cause maximally different
outputs in f. Subsequently, we can apply Theorem 4.6 because A is forced by free-lunch
privacy to provide statistically similar results for any data sets.

33



UNIVERSITAT POLITECNICA
DE CATALUNYA \
BARCELONATECH oo

Karlsruher Institut fiir Technologie

100

10—1 ]

10—2 ]

1073

Figure 5: Minimum /S for the («, §)-accuracy of an e-free-lunch private algorithm.

Proof. Let D, D' € Z be arbitrary with |f(D) — f(D')| = maxp 5 | f(D) — f(D')]. Algo-
rithm A is e-free lunch private, so for any measurable S C R we have

PA(D) € S] _
PrAD) €S| = (81)

The corollary now follows immediately with Theorem 4.6. O]

We have found a lower bound for the error o of any e-free lunch private algorithm A.
However, it is not directly obvious that this lower bound results in poor utility. Here,
we present the case that it does. We must consider what the result from Corollary 4.7
means: The probability of an error greater than a = 3 maxp 5 | f (D) — f(D")] is at least
b= es}i-l' If algorithm A is supposed to approximate f, then an error as great as « is very
undesirable: Even the largest differences in the output of f can no longer be differentiated
when using the private algorithm A. However, such an error may be acceptable if its
probability  is very small. Figure 5 shows that for privacy leakage ¢ € (0,2), the lower
bound for § exceeds 10%, and even for high privacy leakage ¢ € (2,4), § is above 1%.
Therefore, we interpret this result as poor utility of any e-free lunch private algorithm
that gives reasonable privacy guarantees.

Now, we use Corollary 4.7 and the equivalence of BDP algorithms and free-lunch private
algorithms from Theorem 4.5 to show that the accuracy of BDP algorithm must also be
poor if the data distribution can be arbitrary.

Corollary 4.8. Let f: X" — R be a deterministic function with finite sensitivity Af <
00. Let ¢ > 0 be real and let 0 < 8 < egﬂrl be real. Then, there exists a probability
distribution 7 over the data tuples X" so that for any e-BDP algorithm A : X» — R
whose input tuples are drawn from 7, the following holds: If algorithm A is («, 5)-accurate

w.r.t. f for an a > 0, then we have

@ > 5 max|f(D) - f(D)|. 2

)

Here, X C X™ denotes the set of data tuples with non-zero probability.
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Proof. Choose tuples D, D" € X" so that they maximize the difference in outputs of f,
ie, [f(D) = f(D')| = maxp p [ f(D) — f(D')]. Then, it follows from Theorem 4.5 that

there exists a probability distribution over X so that tuples D, D’ € X" are among the
tuples with non-zero probability and so that any e-BDP algorithm with domain X" is
e-free-lunch private — including A. Thus, Corollary 4.7 applies to A. It follows the stated
lower bound of («, §)-accuracy w.r.t. any deterministic function, in particular f. O

4.3 Discussion

This section has shown that the BDPL of an e-DP algorithm can be bounded by me, where
m is the number of correlated records. Under arbitrary correlation models, this bound is
tight, even if the Pearson correlation coefficient is limited. Additionally, we have proven
that the utility of any e-BDP algorithm must be poor if correlation can be completely
arbitrary, with no limit to the number of correlated records m. These negative results
indicate that it is not be possible to give good utility guarantees for BDP algorithms
under arbitrary correlation, unless only a sufficiently small number m < n of records are
correlated. These results motivate the following sections on utility where specific models of
the data distribution are assumed (i.e., genomic data, data with a multivariate Gaussian
correlation model, and data following a Markov chain). Indeed, in Section 6 we find that
limiting Pearson correlation coefficient p can result in decent utility guarantees if the data
has a multivariate Gaussian correlation model — even if all n records are correlated.
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5 Genomic Correlation Model

Genomic data is a prime candidate for applications of BDP for three reasons: (1) It is
often considered highly sensitive and thereby private information [1]. (2) It is collected
and analyzed of millions of people [37]. (3) The correlation of genetic material between
family members is very well understood, and can — for some parts of the human genome
— be broken down to the fundamental laws of inheritance by Gregor Mendel [18]. In
this section explore the impact of this correlation type on the privacy leakage, proving
Corollary 5.2 which shows that the general bound of the BDPL of an e-DP counting query
on genomic data is nearly tight. Besides, in Section 5.2 we investigate the consequences
of this result for the utility of a counting query. We investigate both the utility of the
Laplace mechanism, and the utility of any BDP algorithm in this situation. In Section 5.3,
we come to the conclusion that the maximum size of the largest family in the data must
be sufficiently small so that acceptable utility is achieved.

The following stochastic model follows Mendel’s laws of inheritance [18] and can be derived
from the model by Wang and Xu [52], who use independent Bernoulli variables to represent
inheritance. While Wang and Xu only looked at the probabilistic relationship between two
parents and their child, we expand the model to include any familial relationship. An allele
is a singular piece of genetic information at a specific position in the genetic code; humans
have two alleles at each position because they inherit one from each parent [47]. Figure 6
visualizes this phenomenon.

Chromosome Chromosome
from mother from father
Allele 1 Allele 2

Figure 6: An allele pair at a specific position in the genetic code.

Definition 5.1 (Mendelian Inheritance). Let X = (X;,...,X,,)" € X" be a random
vector. Let set E C {(i,7) | i,7 € [n]} be a set of edges. We say random vector X is
Mendelian distributed with pedigree graph G = ([n], £) if all of the following requirements
hold. Let 4, j, k € [n] be arbitrary.

e The data domain consists of n allele pairs, each one corresponding to a different
person at the same genetic position. For each person, either both alleles are major
(homozygous-major: BB), they are mixed (heterozygotes: Bb), or both are minor
(homozygous-minor: bb). Le., the domain is X = { BB, Bb, bb}.

e We call X; an ancestor of X, if there is a path from j to 7 in the set of edges E. In
this case, we also call X; a descendent of X.
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X
BB Bb bb
BB| (1,0,0) (05,050  (0,1,0)

X; Bb|(05,050) (0.25,05,0.25 (0,0.5,0.5)
b | (0,1,0) (0,0.5,0.5) (0,0,1)

Table 3: Probability distribution of X; on { BB, Bb,bb} given the alleles of their parents.

o We call X; a parent of X; if X; is an ancestor of X;, and the path between them in
E is exactly one edge long. Every random variable X; has at most two parents.

o If j # k and X; and X are parents of X;, then the probability distribution
PriX; = z; | X; = x;, X}, = ] is given by Table 3. Each cell shows the proba-
bility distribution of X; on {BB, Bb, bb} given the values of X}, and Xj.

e Random variable X; is independent of X if they do not share a common ancestor.

e Random variable X; is conditionally independent of any random variable that is not
a descendent of X;, given their parents X; and Xj. Le., let A C [n] be the set of the
indices of all descendants of X;. Then, for any subset B C [n]\ A of indices that are
not descendants of X;, and for all z;, x;, x, € X and all xp € XIBl we have

PI"[XZ =T ‘ Xj = l’j,Xk = xlmXB = XB] = PI"[XZ = XT; ‘ Xj = xj,Xk = l’k] (83)

Under this stochastic model, the members of a family (i.e., a connected component in
the pedigree graph G) can all be correlated with each other. E.g., in a family with two
parents and m — 2 children, each child will — of course — be correlated with both parents,
but also with every other child because their genetic code depends on the same parents.
Thus, if we assume that the largest family in the data tuple has m members (i.e., the
largest connected component in G has size m), then the general bound becomes me.

5.1 Relationship between DP and BDP

In this section, we will show that the general bound of me is (nearly) tight for genomic
data. More specifically, Corollary 5.2 will prove that we can construct a pedigree graph G
so that the BDPL of a counting query is at least (m—1)e. It is worth mentioning that this
does not involve a particularly complicated or unrealistic pedigree graph. Indeed, such a
BDPL occurs when we have a family with two parents and m — 2 children because certain
changes in the genetic code of the parents can completely alter the respective genetic code
of the children under Mendelian inheritance.

First, we prove Theorem 5.1, which shows that two specific data tuples become “neigh-
bors” under the definition of BDPL for certain pedigree graphs G. This result will be
essential for Corollary 5.2, where we show that this neighborhood causes a high BDPL
for a counting query with the Laplace mechanism. Additionally, we use this result in
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Corollary 5.3 to show a general lower bound on the error a of any BDP counting query
on genomic data.

Theorem 5.1. Let n € N be the size of the data tuple, and let 3 < m < n be the number
of correlated records. Let D = (BB, bb, BU™ 2, bb" ™) and D' = (BB, BB, BB™ 2, bb"™™)
be two data tuples, where z° := (z,...,7) € X’ denotes a repeating tuple for any ¢ € N
and any x € X. Let S C ) be a measurable set. Then, there exists a set of edges
E C{(i,j) | i,j € [n]}, so that the BDPL of any algorithm A : X" — ) whose input
tuples are drawn from a Mendelian distribution with pedigree graph G' = ([n], E) with m
correlated records, is lower bounded by

PrlA(D) € S

BDPL >1 .
= " PiA(D) € 5]

(84)

Proof. First, we will construct the pedigree graph G = ([n], £') and show that this results
in D and D’ being “neighboring” data sets from the perspective of BDP. The idea is to
have a single family with two parents and m —2 children, whose records will be completely
determined by the records of the parents. We call set F' = [m] the indices of the family.
The indices of the parents are 1 and 2, while the indices of the children are C' = {3,..., m}.
Thus, we choose the set of edges as

E={(1,i),(24)|ieC). (85)

We call the remaining indices R = [n] \ F. Let random vector X = (X,...,X,,)" follow
a Mendelian distribution with pedigree graph G = ([n], £).

We are trying to find a lower bound for the BDPL where D = (BB, bb, Bb™ 2 bb" ™)
and D' = (BB, BB, BB™ 2 bb"™) are neighbors. Observe that in data tuple D, the
allele pairs of the parents are BB and bb, respectively. Thus, all m — 2 children must have
allele pair Bb according to the probability distribution from Table 3. Indeed, these are
the alleles of the children (indices 3 to m) in data tuple D. For D', it is similar: The allele
pairs of the parents are both BB. Thus, all children must have allele pair BB.

We see that a change in the allele pair of a single parent — from bb to BB — can cause
the allele pairs of all m — 2 children to change. We use this fact to construct the lower
bound for the BDPL. Consider the adversary (K, i) who knows indices K = {1} UR, i.e.,
they know the record of one parent and any remaining records not part of the family, and
target the second parent ¢ = 2. The records of the children in set C' are unknown to the
adversary. Then, we can construct the following lower bound for this adversary-specific
BDPL. Let random variable Y represent the output of algorithm A, and let S C Y be
any measurable set.

Pr[Y € S| Xx = xx, Xo = 3]

BDPLj2 = sup In > (36)
e xxanald PTY € 8| X =xp, Xo = 5]
Pr[lY € S| X{=BB, Xz =0b0""" X, =bb
> LY eS| X ) AR , Xp = bY] (87)

= Pr[Y € S| X, = BB, Xy = bb* ™, X, = BB]

The lower bound holds because the BDPL is a supremum and we simply choose the
values for xz;,z; and xx that correspond to data tuples D and D’. We now treat the
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numerator and the denominator separately to avoid cluttered notation. We begin with
the denominator:

Pr[Y € S| X; = BB, X, = BB, Xy = bb" ™™
= Y PiY€S|X,=BB, X,=BBXp=b"" Xc=xc]

XCeXm72
-Pr[X¢ =x¢ | X1 = BB, Xy = BB, Xy = bb" ™™ (88)
= Y PiY€S|X;=BB X,=BBXgp=b"" Xc=xc]
XCGXm72
. Pr[X¢ = x¢ | Xy = BB, X, = BB] (89)
= Y PiYe€S|X,=BB, X,=BBXp=b"" Xc=xc]
XCEXm72
JIPrlX; = 2; | X1 = BB, X, = BB (90)
jeC
= Pr[Y € S| X, = BB, X, = BB, Xy = bb""",Xc = BB"?
I PrlX; = BB| X1 = BB, X, = BB] (91)
jeC
= PrlY € S| X, =BB,X,=BB,Xz=0b"",Xc=BB"? (92)
= Pr[A(D)) € S] (93)

We use the law of total probability in eq. (88) to introduce the alleles of the children
in C'. It is possible to remove the condition on the remaining random variables Xy in
eq. (89) because they are independent of X since there are no paths between any index
in R and any index in C in the set of edges E. In eq. (90), we simply calculate the
joint probability of the children as a large product because they are all conditionally
independent given the alleles of their common parents. Here, we denote the alleles of the
children as x¢ = (x3,...,2,,) . For the alleles of the parents X; = BB and X, = BB,
only X; = BB has probability 1, all other options have probability 0 (see Table 3). Thus,
this is the only option that remains in eq. (91). Since all of the remaining conditional
probabilities are 1, we arrive at eq. (92). Now, the entire input of A is defined in the
condition on the probability of Y € S. Thus, we can rewrite it to eq. (93).

An analogous equality can be shown for the numerator with Xy = bb.
PrlY € S| X; = BB, Xy =bb,Xg = bb"" "]
=Pr[Y € S| X, = BB, Xy =bb,Xp =b""" Xc = Bb" (94)
= Pr[A(D) € 5] (95)

With these two results, we can calculate a lower bound for the BDPL in this situation
and prove the theorem.

BDPL > BDPL ) (96)
Pr[A(D) € S|
=0 S AD) € 3] (97)
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]

Now, we use this result to show the minimum BDPL of the Laplace mechanism applied
to a counting query. A counting query is a reasonable application for genomic data since
the frequency of certain genetic code in the population is of interest [2].

Corollary 5.2. Let n € N be the size of thNe data tuple, and let 3 < m < n be the number
of correlated records. For any data tuple D € X™, let query g : X™ — N be defined by

g(D)=> 1{D; = BB}. (98)

i€[n]

Then, there exists a set of edges £ C {(i,7) | i,j € [n]}, so that the BDPL of the
Laplace mechanism M, , whose input tuples are drawn from a Mendelian distribution
with pedigree graph G = ([n], E') with m correlated records, is at least

BDPL > (m — 1)e. (99)

Proof. Let algorithm M. , be the Laplace mechanism applied to g with privacy leakage
e, and let random variable Y denote the output of A. We use the previous result from
Theorem 5.1 and explicitly calculate the lower bound of the BDPL for set S = (—o0, 0].
This choice of set S makes the following calculations simpler because the probability
Pr[Y" € S] simply becomes the cumulative distribution function Pr[Y” < 0.

We first determine the output distribution of the algorithm M. ,, and subsequently we can
calculate the lower bound on the BDPL using this distribution. The Laplace mechanism
uses the Laplace distribution. If a random variable Z is Laplace distributed with location
i € R and scale b > 0, then the cumulative distribution function at z € R with u > z is

1 _
Pr[Z < z] = —exp = (100)

2 b
according to [27, p. 21]. The sensitivity of counting query g is Ag = 1. The Laplace
mechanism adds Laplacian noise Z with location zero and scale b = % = % to the output

of g. Thus, for any D € X" we have

Pr[M. ,(D) € S] = Pr[M. 4(D) < 0] = Pr[g(D) + Z < 0] = Pr[Z < —¢g(D)]  (101)
_ %exp (M) (102)

= S exp(—eg(D)) (103)

In eq. (102) we use the definition of the cumulative distribution function from eq. (100).
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We can now use this equality in the lower bound of the BDPL. We apply Theorem 5.1, so
for data tuples D = (BB, bb, Bb™ 2, b0"~™) and D' = (BB, BB, BB™ 2 bb"™™) we have

PrM. (D) € 5]

BDPL 2 In =t oy (104)
| esp(—g(D)
M exp(—o(D) 1)
. exn(o)
= (106)
= Inexp((m — 1)¢) (107)
— (m— 1. (108)

In eq. (105), we use the equality from eq. (103). Then, we can apply counting query g to
D and D’ respectively and find g(D) = 1 and g(D') = m. We use these two results in
eq. (106). After two more straight-forward equivalences, we arrive at the lower bound for
the BDPL which we set out to prove. O

5.2 Accuracy

When dealing with genomic data, we have seen that the BDPL of the Laplace mechanism
applied to a counting query can (nearly) reach the general upper bound of the BDPL,
for certain pedigree graphs. Now we investigate how this affects the utility of any BDP
algorithm with respect to the deterministic counting query. More specifically, Corollary 5.3
proves a lower bound on the error «, using Theorem 4.6 from Section 4 on arbitrary
correlation. Afterwards, we compare this result to the actual (a, 8)-accuracy of a BDP
algorithm using the Laplace mechanism in Figure 7.

Corollary 5.3. Let n € N be the size of the data tuple, and let 3 < m < n be the number
of correlated records. For any data tuple D € A", let query g : X — N be defined by

g(D)=>_1{D; = BB}. (109)
i€[n]
Let ¢ > 0 be real and let 0 < 8 < 65—11 be real. Then, there exists a set of edges
E C {(i,5) | 4,57 € [n]}, so that for any e-BDP algorithm .4 whose input tuples are
drawn from a Mendelian distribution with pedigree graph G = ([n], E') with m correlated
records, the following holds: If algorithm A is («, §)-accurate with respect to g for an
error a > 0, we have

m—1

>
@ 2

(110)
Proof. First, we use Theorem 5.1 to show that in this situation, there exists a set of
edges FE so that the difference in distribution between outputs for data tuples D =
(BB, bb, Bb™2,bb""™) and D' = (BB, BB,BB™ 2 0" ™) of any e-BDP algorithm A
must be limited by €. Then, we apply Theorem 4.6 from the previous section to show that
this causes a minimum bound on the («, §)-accuracy.

41



UNIVERSITAT POLITECNICA *‘(IT
DE CATALUNYA
BARCELONATECH oo

Karlsruher Institut fiir Technologie

According to Theorem 5.1, for any e-BDP algorithm A and measurable S C R we have
PrlA(D) € 5]

BDPL > In PAD) € (111)
PrlA(D) € 5]
& > D) € 3] (112)

The second inequality follows because of inequality ¢ > BDPL according to Defini-
tion 2.12, the definition of e-BDP.

Now we have fulfilled the prerequisites to apply Theorem 4.6 with data tuples D and D'.
Recall that — in a nutshell — Theorem 4.6 states that the error o must exceed 3|f(D) —
f(D"] for any deterministic function f and for certain probabilities § when the difference
in output distribution for D and D’ is limited by e®. Since Theorem 4.6 applies to any
deterministic function f : X™ — R, it must also apply to ¢g. Additionally, for the distance
between g(D) and g(D’) we have

9(D) = g(D')] = [1 —m| =m —1. (113)

So when Theorem 4.6 is applied to this situation, it states: If algorithm A is («, 5)-accurate
with respect to g for a probability 8 < — +1, then we have
1 m—1

> Slo(D) —g(D)] =" (114)

]

Now, we have a lower bound of the accuracy of any e-BDP algorithm approximating
counting query g. We can compare this to the accuracy of an actual e-BDP algorithm
approximating g — the Laplace mechanism. We have proven an accuracy statement of the
Laplace mechanism using the general bound in Corollary 4.4 in the section on arbitrary
correlation. Figure 7 compares the two results: The theoretical lower bound of the (o, 5)-
accuracy, and the actual («, 3)-accuracy of the Laplace mechanism. This is shown for
different BDPLs € and different numbers of correlated records m. The figure is interpreted
in the following discussion.

5.3 Discussion

This section has shown that the general bound me of the BDPL of an e-DP algorithm is
(nearly) tight for Genomic data when the pedigree graph is unrestricted except for limiting
the size of the largest family to m. Whether an acceptable utility-privacy trade-off can be
achieved thus depends on the parameter m of the number of correlated records.

If we make no assumptions about the pedigree graph of the data, than in the worst case
we must expect that all n records are correlated and we have m = n. In this case, the error
of the Laplace mechanism for € = 2 exceeds the size of the data tuple n with probabilities
as high as = 10% (see solid lines in Figure 7). Even the general best-case errors (dashed
lines) reach up to 50% of the size of the data tuple. The utility degrades further when
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Figure 7: Accuracy of an e-BDP counting query on genomic data. The y-axis shows the
respective value of error « for a given probability 5 on the x-axis. The («, 5)-accuracy of
the Laplace mechanism applied to a counting query g is shown as a solid line. The lower
bound of a for a BDP counting query on genomic data is shown as dashed. The results
are displayed for different privacy leakages ¢ and number of correlated records m.

decreasing the privacy leakage €. Thus, we conclude that the maximum size of families
in the pedigree graph must be limited in this situation to achieve good accuracy. How
severely the maximum size must be limited would depend on the specific application and
the error tolerance of the data analyst.

It may still be possible to find an improved bound for the BDPL of an e-DP algorithm on
genomic data if the structure of the pedigree graph is further restricted. The restriction
would need to be designed so that our tightness proof (see Theorem 5.1 and Corollary 5.2)
no longer applies. E.g., one could limit the size of core families (families consisting only of
parents and their direct children) to [, and the size of entire (multi-generational) families to
m > [. Here, the general bound would still be me, but we hypothesize that an improved
bound closer to le may be possible because the correlation between a person’s allele
pair and their ancestor’s allele pair should weaken with every generation between them.
Finding the exact bound and proving it is a possible avenue for future work.
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6 Multivariate Gaussian Correlation Model

A Gaussian distribution is an appropriate model for a wide variety of phenomena [39, p.
14]; for example, the distribution of heights in the population follows a bell curve [7]. When
we are dealing with data tuple of n records, and each record is drawn from a Gaussian
distribution, then we can model the joint distribution of all records as a multivariate
Gaussian distribution. This model also able to capture the linear correlation between any
records [43, p. 28].

In this section, we explore the relationship between DP and BDP when the data is drawn
from a multivariate Gaussian distribution. We find a new upper bound for the BDPL in
Proposition 6.4, dubbed the Gaussian bound. When the Pearson correlation coefficient p
is sufficiently small, the Gaussian bound improves on the general bound of me, where m
is the number of correlated records (see Figure 8). However, we will see that the Gaussian
bound is not tight. Therefore, we run simulations to compare the theoretical and empirical
BDPL for different strengths of correlation. The results can be seen in Figure 9. Finally,
we investigate the utility and show under which circumstances e-BDP algorithms can
achieve similar accuracy to e-DP algorithms (see Corollary 6.5).

Definition 6.1 (Multivariate Gaussian Distribution [43]). Let X = (X1,...,X,)" € R"
be a random vector, let vector € R™ be real and let matrix ¥ € R™"™ be symmetric
and positive definite. We say X follows the multivariate Gaussian distribution with mean
i and covariance Y if the probability density of X for any point x € R" is

— L exp(—i(x— )2 (x— ) (115)

px(x) = —/—(27r)”|2| exXpi—3

where || denotes the determinant of ¥. We denote that X follows the multivariate Gaus-
sian distribution by X ~ N (u,X).

More specifically, this section concerns tuples D = (z1,...,z,) € R" that are drawn from
a multivariate Gaussian distribution where each record corresponds to one component of
the random vector X. Note that the multivariate Gaussian distribution has the infinite
domain A" := R", so any real number is theoretically possible for a record z;.

A multivariate Gaussian distribution is defined by its mean vector p and covariance matrix
Y. These two parameters correspond to the expected value E[X] = p and the actual
covariance E[(X — EX)(X — EX)'] = ¥ of random vector X. This also means that the
covariance between single random variables X; and X; for ¢ # j is found in entry ¥;; of
the covariance matrix [43, p. 28].

The Gaussian bound will apply to a certain class of algorithms: Those that are both DP
and fulfill d-privacy when using the ¢;-distance for d. An example of such an algorithm
is a sum query that clips the input to a specified range, computes the sum, and adds
Laplacian noise. To prove this, we will first establish a relationship in Proposition 6.1
and Theorem 6.2 between d-privacy (see Definition 2.6) and an analogous form of BDP
which we call d-BDP. Subsequently, we use this result in Proposition 6.4 to investigate the
relationship between conventional BDP and algorithms that are both DP and d-private.
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6.1 Relationship between d-Privacy and d-BDP

This section concerns algorithms that are d-private, a generalisation of DP where the
allowed privacy leakage depends on the distance between data tuples. See Definition 2.6.
We define an equivalent generalisation of BDP that depends on the distance between
value z and 2’ of the target record.

Definition 6.2 (Target Dependent BDPL). Let random vector X = (X1,...,X,)" € A"
follow distribution 7. Let A : X™ — ) be a randomized algorithm whose input data
is drawn from 7. Let ¢ € [n| be the index of the target record by the adversary, and
let K C [n]\ {i} be the indices of records that are known to the adversary. Then, the
adversary-specific target dependent BDPL of A w.r.t. adversary (K, ) for any target values
x,x’ € X is

py(S | XK = XK,XZ' = .%‘)

BDPL g (z,2") = supln . 116
(K, )( ) x}(g py(S | XK _ XK7Xi _ I/) ( )
The target dependent BDPL of A is
BDPL(z,2") = sup BDP Lk ;(x,z"). (117)
i K

Definition 6.3 (d-Bayesian Differential Privacy). Let d be a distance metric on X. Algo-
rithm A : X — Y is d-Bayesian differentially private if and only if for all values z, 2’ € X
we have BDPL(z,2') < d(x,2').

This definition is very similar to the original definition of BDP, Definition 2.12. The only
difference is that d-BDP does not take the supremum over x, 2. Privacy notion d-BDP is
equivalent to BDP for distance metric d(z,z’) = € if # # 2’ and d(z, z") = 0 otherwise.

The target dependent BDPL of an algorithm is defined as the maximum over all adversary-
specific BDP L ;)(x,2'), for any adversary (/,4). Therefore, in order to obtain a bound
on BDPL, we divide the problem into two steps: First, we derive the adversary-specific
target dependent BDPL in Proposition 6.1. Then, we use this result to derive a bound on
the target dependent BDPL of a d-private algorithm for any adversary in Theorem 6.2.

Proposition 6.1. Let ¢ > 0 be the privacy parameter and n > 2 be the size of the
data tuple. Let A with data domain R™ be a d-private algorithm with distance metric
d(D,D’") = ¢||D—D'||; for any tuples D, D" € R™. Further,0 < k < n—2and u € N are the
number of known and unknown records by the adversary, respectively, with n = k+u+ 1.
Let K = {n —k,...,n— 1} be the set of known indices for the adversary. Finally, the
data tuples are drawn from a multivariate Gaussian distribution N (u, ) with

= ( - ) , (118)
HEKn

2U 2U;K,n
(3 %) o
U;Kn Kn

™
Il
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for mean py € R* and pig,, € R¥*! and covariance Xy € R, YNy, € REFDx(k+D) ang
Yu.kn € R“*(*+1) Tt the matrix X k. be invertible. Then, the adversary-specific target
dependent BDPL of A for any target values x,,z), € R is limited by

BDPLisen)(n,,) < (IS0r1cn S (0, 1) [l + D, ) (120)
where the notation (0,1)" denotes the vector (0,...,0,1)" € R¥+1,

Proof. Let Y be the random variable that represents the output of algorithm A. Let
random vector X = (Xi,...,X,)" follow the multivariate Gaussian distribution X ~
N(u,Y). Consider the definition of the adversary-specific target dependent BDPL of
(K, n). From eq. (116) we have

pY(S ’ XK = XKaXn = xn)

BDPLk n)(Tn, ;) = supIn

. 121
xis Pv(s| Xg =%k, X, = $;L) ( )

Let s € R and known values xx € R¥ be arbitrary. We will calculate the adversary-specific
target dependent BDPL by rewriting the density py (s | Xx = Xk, X, = x,,) in terms of
py (s | Xk = xg, X,y = 2})), where the value of X,, has changed. First, we apply the law
of total probability to rewrite the probability density.

pY(S | XK :XK7Xn :In) -

/ pY(S | Xy =xp, Xg =Xk, X, = l"n) 'pxU(XU | XK =Xk, Xp = CBn) dxy
(122)

To complete the proof, we must rewrite the latter two probability densities with their
respective counterpart that has condition X,, = 2/, instead of X,, = x,,. Later, we achieve
this with integration by substitution.

We will now analyze px, (z, | Xk = Xk, X,, = x,) to see which substitution is useful.
Since X is jointly Gaussian distributed, this conditional distribution is also Gaussian
distributed [41, p. 40]. To simplify notation, we combine the random vector Xx and
random variable X, into one vector X gugny With Xg, = (Xx, )" and X, = (xgc, 7))

Now we can express the conditional distribution with the formulas from [41, p. 40]. Let
Xy € R* be arbitrary. We have

Pxo(Xu | Xkumy = Xkn) = N (v, ) with
fir = pw + Sk S g (X — Hicn), (123)
Sy =S — Suik S g S0k (124)
It is important to note that only the conditional mean /iy depends on the specific value

Xk n, the conditional covariance f]U remains fixed. Therefore, the two distributions (condi-
tioned on xf,, and Xj,, € R*¥*+1 respectively) only differ by a translation. To demonstrate
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this, here is the conditional distribution for x

pxo(Xu | Xxopmy = Xien) = N (figy, Sfy) with

/l/U =y + EU§K7nE;(%n(XII(,n — [iin) (125)
= fw — EU;KJ"LEI_{?n(XK,n - X/K,n)’ (126)
Sl = S0 — Stk S Sk (127)
=3y (128)

With eq. (126) we can derive the following equivalence between the probability densities
of the unknown random variables, conditioned on X,, = z,, or X,, = ], respectively. We
plug in a particular value into the first probability density, to show that it then becomes
equal to the probability density in eq. (131).

px(Xu + ZU;K,nE]_{?n(XK,n - XIKM) | Xkumny = Xk )

1 1 . _ R A
——————exp (5 (&v + Do T (K — Xic) — fr) 5
(2m)|S|
(%0 + SvisnE it (Kicn = Xig) = fiv) (129)
1 1, . S~ .
—————exp( 5 (%v — i) " (Ko — i) (130)
(2m)|
=pxo(&o | oy = Xin) (131)

First, in eq. (129) we expand the definition of the multivariate Gaussian probability density
from Definition 6.1 with mean /iy and covariance matrix ;. Then we use eq. (126) in
eq. (130). The resulting equation now contains the probability density with mean /i, and
covariance matrix i]’U, which corresponds to the density with condition X,y = XJ,,. We
use this fact in eq. (131). Therefore, we have shown that the condition of the probability
density px, can simply be changed by additively shifting the input for the density.

As a result, we substitute x; with Xy + EU;K,nZ[_(}n(XK,n — Xk,,) in the integral from
eq. (122): It allows us to change density px,, from being conditioned on X,, = z,, to being
conditioned on X,, = z/,. To shorten notation of the substitution from here on out, we
define v := Yk n X g (Xxm — X n)-

We also have to consider the effect of this substitution on the other probability density py
in the integral. Note that the entire random vector X is defined in the probability density
in eq. (132), so random variable Y only depends on the randomization of algorithm .A.
Therefore, we can use the fact that algorithm A is d-private with the ¢;-distance.

py(s | Xy =Xy + 7, Xg =Xk, Xy = Tp)
< exp(([[y[h + |20 — 2)])e) - py (s | Xu = Xu, Xk = X, Xy = 27,) (132)

The equivalence from eq. (131) and the inequality from eq. (132) now come together to
reformulate the density py (s | Xx = xx, X, = @) in terms of py (s | Xg = xg, X, = 7))
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where the targeted random variable has changed from value z, to z!,. We once more
employ the law of total probability to introduce the unknown values xg.

pY(S ’ Xg =2k, X, = l‘n)

:/ py(s | Xy =xu, Xk = 2k, Xy, = ) - px(Xv | Xk =2k, X, = 2,) dxp (133)

:/ py(S ‘ XU :iU—{”anK = I‘K,Xn = l’n) pXU(iU_F’Y ‘ XK = I’K,Xn = l’n)df{(]
(134)

:/ py(s | Xu =%y + 7, Xk = 2k, Xpn = ) - px(Xv | Xk = 2k, X, = 2,) dXpy
(135)
<exp((||7l[1 + |zn — 27,])e)-

/ py(S ‘ XU = )NCU,XK = xK;Xn = x;) ~pXU(5cU | XK = xK,Xn = SC;L) d)~(U (136)
=exp((|[7l[1 + |zn — 20])e) - oy (s | Xk = 2k, Xy = 7)) (137)

We substitute x; for Xy +y in eq. (134) using the change of variable theorem for multiple
integrals [44, p. 310]. The substitution is linear so the domain R* over which we integrate
does not change, and the determinant of the Jacobian of the substitution is simply 1.
Then, we apply eq. (131) in eq. (135). Similarly, we use the inequality from eq. (132) in
eq. (136). Finally, the law of total probability is once again employed in eq. (137).

Now, we can formulate the upper bound of the adversary-specific target dependent BDPL
for (K, n) by applying eq. (137) in eq. (121). Let z,, 2!, € R be arbitrary.

BDPLx ) (xn, 7,) < ([[V]11 + |n — 2,])e
= (IZvikaZn (Xkm = X )l + |20 — 27 ])e
= (120 Ercn (5, 20) ' = (xac, 2) Dl + 0 — 2])e
= (120 X500 (0,20 — 20) Tl1 + |20 — 27, ])e
= (120 X500 (0, 1) 1 + 12w — a7
= (I120:xn 255 (0, 1) [l + Dd(wn, 2,)

O

Proposition 6.1 has given an upper bound on the adversary-specific target dependent
BDPL. Now, we will prove an upper bound for the target dependent BDPL for a d-
private algorithm, given that the maximum Pearson correlation coefficient between any
two random variables X; and X; is bounded by p < ﬁ This means correlation is

restricted to be very small.

Definition 6.4. For p € [0,1] and n € N, we call the matrix ¥, € R™"™ a limited
covariance matrixz if

1. The matrix ¥, is symmetric and positive definite.
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2. The diagonal of ¥, is constant. I.e., there is a variance o2 > 0 so that i = o? for
all i € [n].

3. Any pairwise correlation is limited by p. Le., for all i # j we have |3, ;| < po?.

Theorem 6.2. Let € > 0 be the privacy parameter, n > 3 the size of the data tuple, and
p < ﬁ the maximum correlation coefficient. Let A with data domain R™ be a d-private
algorithm with distance metric d(D, D") = ¢||D — D’||; for any tuples D, D" € R™. Let the
tuples be drawn from a multivariate Gaussian distribution M (p, X,) with mean p € R”
and limited covariance matrix ¥, € R™*". Then, for any z,2’ € R we have

2
BDPL(z,2') < | ———— + 1] d(x,2). 138
Proof. To prove an upper bound for the target dependent BDPL, we must bound the
adversary-specific target dependent BDPL of every possible adversary (K,i) with i € [n]
and K C [n] \ {i}. The remaining indices besides K and i make up the unknown indices
U =n]\ (K U{i}). Proposition 6.1 requires that there is at least one unknown index in

U. Thus, we differentiate between two cases.
Case 1: There are no unknown indices; we have U = ().

Here, the set of known indices K = [n] \ {i} must contain every index except the target.
Thus, the entire data set is made up of the known values xx and the target value z; € R
or ¥t € R. We define D = (xg,z;)" and D' = (xg,2})". We can calculate the target

dependent BDPL of this adversary by using the fact that A is d-private.

pY(S | Xg =X, X; = xz)

BDPLg(x;,x;) = sup In 139
() ) x;(g py (s | Xk =xk, X; = 2}) (139)
py(s| X = D)
= sup In 140
e SIX=D) (140)
el|[D-D'||1 )
e py(s| X =D")
< supIn 141
S X = D) (141)
= Ineflrl = gz — 2| = d(z;, 2) (142)
< " d(z;, 7)) (143)
e T, T
- 4(% —n+3)

Case 2: There is at least one unknown record in U # ().

Let k = | K| be the number of known records and u = |U| the number of unknown records.
W.lo.g. we have K = {n — k,...,n — 1} and i = n. Otherwise, we simply reorder the
components of random vector X so that the statements about K and ¢ apply.

Choose Xy € R¥™ Yirpe,, € RWEFD and ¥ € REFDX(EHD) o6 that the following holds:

Yu  Xukn
2, = (144)
EU;K,n EK,n
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In order to use Proposition 6.1, we require that the covariance matrix of the known
records Xk, is invertible. We show that this is the case: A matrix is invertible if none
of its eigenvalues are zero. We will find a lower bound for the eigenvalues of X ,, that
is strictly positive. Conveniently, we can later also use this fact to bound the entries of
Z;én. To find the bound on the eigenvalues, we must refer to individual cells of X .

Ykm = (@j1)jielk+1) (145)

Now, we can bound the eigenvalues with the Gershgorin circle theorem [17] and the fact
that a symmetric matrix only has real eigenvalues [19, p. 1]. According to the Gershgorin
circle theorem, every eigenvalue of a real matrix such as X ,, is contained in a closed disc
on the complex number plane with center a;; and radius >, |aj| for j € [k + 1]. Since
the eigenvalues of the matrix must be real, we are only concerned with the real part of this
disc, i.e., the interval [a;; — >, |azl, aj; + 32,45 lajl]. We can construct a lower bound
of the smallest eigenvalue A_ of X, by finding the lowest border of these intervals.

Ao > minag; — ) ag| (146)
’ i
> ming? — 2
> mino® = [po’ (147)
I#j
= 0% — kpo® (148)
=(1—kp)o? (149)
1
1—(n—2)- ?= 1
>(1—(n—2) — 2)0 0 (150)

In eq. (147), we use the fact that every random variable has the same variance o and

the correlation between any two random variables in X is in the interval [—p, p|. See
Definition 6.4 on the limited covariance matrix. Then we show in eq. (150) that the
bound is positive: The number of known records k£ must be n — 2 or smaller because there
is one targeted record and at least one unknown record in U # (). Additionally, we use
that the maximum correlation p is bounded with p < ﬁ Thus, we have shown that each
eigenvalue of Y, is strictly positive and the matrix is therefore invertible.

Now, nothing is standing in our way of applying Proposition 6.1. Thus, we have an upper
bound of the adversary-specific target dependent BDPL for any x;, 2} € R with

BDPL (i) < (|Svn S (0. DI|1 + V(. a0). (151)

This bound still depends on the specific matrices Y., and X, for this adversary. Our
goal is to find a bound for the total target dependent BDPL, irrespective of the specific
adversary. To find a general upper bound for this expression that does not depend on
the specific matrices at hand, we name the cells of both matrices similar to our naming
convention for X .

YUK = (bjl)je[u},le[k+1} (152)
Sin =t (1) jief+1] (153)
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To find a more universal bound for eq. (151), we bound the entries of ¥y ,, and Z;Cln. Let
us begin with the first matrix. It only contains covariances between random variables from
U and random variables from K or n. Thus, we use the fact the covariance is bounded by
po? because the maximum correlation between two random variables is p. For all indices
J, 1 € [u] we obtain the result

o] < po® (154)

Now, we bound the entries of the inverse matrix. We first show that the entries of a
matrix A~ must be smaller than the inverse of the smallest absolute eigenvalue A_ of A.
Consider the 2-norm of any symmetric matrix A € R?*?_ defined as

[ All2 := sup{[|Av]]z | [[oll2 = 1}, (155)

The 2-norm of A is equal to its maximum singular value (i.e., the largest absolute eigen-
value for a symmetric matrix) [48, p. 47]. Thus, we can use the 2-norm to bound the
entries of a symmetric matrix by its largest absolute eigenvalue |\, |. Let e; € R? be the
vector with 1 at position j and 0 elsewhere. For every entry a;; we have

jaij| = yJak < [ ad; =1Aej|l < [|Alla = [Ay]. (156)
ke[m)]

Additionally, the eigenvalues of an inverse A~! can be determined knowing the eigenvalues
of A. Let A € R be any eigenvalue of A; A cannot be zero because A is invertible.

Ax = \z
& A'Ar =) A"z
e x=\NA"1z
1
= X,T = Ay

Thus, the eigenvalues of A~! are the inverses of the eigenvalues of A. Putting it all together,
the entries of Z;(}n are smaller or equal to the inverse of the smallest absolute eigenvalue
of ¥k . In eq. (149), we have shown that all eigenvalues of X ,, are positive and larger
than (1 — kp)o?. Therefore, the smallest absolute eigenvalue of Y, is also larger than
this bound. Now, these two facts (the entries of a matrix can be bounded by the largest
absolute eigenvalue, and the eigenvalues of A~! are the inverses of the eigenvalues of A)
are brought together to bound the entries of Z;(}n:

1 1
D 1
A T (1 —Ekp)o? (157)

ajp <

With the bounds for the entries of ¥k, and E;&n in hand, we can find a general upper
bound for the adversary-specific target dependent BDPL for any x;, 2, € R.

51



UNIVERSITAT POLITECNICA
DE CATALUNYA \
BARCELONATECH oo

Karlsruher Institut fiir Technologie

BDPLx)(wi,77) < (||Zvixan X5y (0,1) 1 + (i, 27) (158)

= (|[Svxn(@rpsts s argrprr) |1+ Dd(z, 2) (159)
k+1 k+1

1O vk b, - Zamﬂ bu,i) Hl+1> d(ws, ;) (160)
=1
u k+1
= Z|Zam+1 ]z|+1> d(z;, ;) (161)

< Z|Z — 1) A, ) (162)
_ (“f__zlpﬂ’ N 1) (s, ) (163)
- u(l%“kl) i 1) d(z;, 7)) (164)
< %5%—7312 + 1) d(z;, 2 (165)
- 4(%—71—7;2) - 1) d(x;, 7)) (166)

We first use the inequality from Proposition 6.1 in eq. (158). Then, we multiply E;{}n and
(0,1)7; only the last column of ¥ remains in eq. (159). The result is multiplied with
Yu.kn in eq. (160). Afterwards, in eq (161) we apply the ¢;-distance to the remaining
vector. The bounds for the entries o and b are used in eq. (162). Keep in mind that the
denominator is always positive because k <n—2 and p < ﬁ Then the two sums can be
simplified by multiplying by their cardinality in eq. (163) since the entries of the sum no
longer depend on j or [. Finally, we bound the numerator and denominator in eq. (165):
The numerator u(k + 1) is smaller or equal to (n/2)? because u and k+ 1 are positive and
together form n = u + k + 1. Thus, their product is maximal if they meet at the exact
midpoint to n. As mentioned previously, the denominator is always positive. It therefore
becomes minimal (and the entire expression maximal) if & becomes maximal. This is the
case for k =n — 2.

In both cases we were able to bound adversary-specific target dependent BDPL as in
eq. (138). Thus, the proof is complete. H

6.2 Relationship between DP and BDP

So far, the proofs have only covered the relationship between d-privacy and d-BDP. How-
ever, we are mainly interested in the relationship between DP and BDP. Therefore, Defi-
nition 6.5 and Lemma 6.3 show how any d-private algorithm with the ¢;-distance can be
made DP by clipping the input data.
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Definition 6.5. For real values a,b € R with a < b, we call ¢, : R® = R" a clipping
function if for all D € R™ and all i € [n] we have

cap(D); = max(a, min(b, D;)). (167)

Let A:R™ — R be a d-private algorithm. Then we call A,; : R” — R the clipped version
of A if for every input D € R", the algorithm A, gives the output A(c,,(D)).

Lemma 6.3. Let A,; be the clipped version of a d-private algorithm A : R — R with
d(D,D") = ¢||D—D'||; for any tuples D, D’ € R". Then, A, is d-private and (b—a)e-DP.

Proof. We begin by showing that A, is d-private. Let Dy, Dy € R" be arbitrary and
S C R be any measurable set. We have

Pr[A,,(D1) € S] = Pr[A(c,p(D1)) € S] (168)

< eflleas (D) =cas (D)l Pyl A(c, 4(Ds)) € S (169)

< ElP=L2ll pr{A(c, 4(Dy)) € S (170)

= ¢“IP1=D2ll P[4, ,(D,) € S]. (171)

In eq. (169) we use that A is d-private. Then, we apply the fact that the ¢;-distance of

two clipped data sets is smaller or equal to the ¢;-distance of the original data sets in
eq. (170). Finally, eq. (171) shows that A, is d-private.

Now, we will show that A, is also DP. Let D, D" € R™ be arbitrary neighboring data
sets, i.e., there only exists a single index i € [n] with D; # D}. For any measurable set
S C Y we have

Pr[A, (D) € S] = Pr[A(c.p(D)) € 5] (172)

< e#lleas D)=l Pr{A(c, (D)) € | (173)

— € e | max(a,min(b,D;)) —max(a,min(b,D}))] Pr[-A(Ca,b(D,)) c S] (174)

_ 68‘max(a,min(b,Di))—max(a,min(b,D;))‘ PT[A(C,L[;(D,)) e S] (175)

< e#O= D Pr[A(c, (D)) € S] = == Pr[A,,(D') € 9). (176)

Once again, we use that A is d-private in eq. (173). We expand the definition of the /¢;-
distance and of the clipping function ¢, in eq. (174). Then, we use for eq. (175) that D

and D’ only differ for index 7. Finally, we can bound the difference between the two entries
because they are clipped to the interval [a, b]. We have shown that A, is (b—a)e-DP. O

With Lemma 6.3 and Theorem 6.2, we can directly show that this class of DP-algorithms
has a limited BDPL. Note that we are now directly establishing a relationship to BDP,
not to d-BDP. Proposition 6.4 is the Gaussian bound.

Proposition 6.4 (The Gaussian Bound). Let € > 0 be real, n > 3 the size of the data

tuple, and p < ﬁ the maximum correlation coefficient. Let A, be the clipped version
of a d-private algorithm A : R" — R with d(D, D’) = ¢||D — D'||;. Let the data tuples be
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drawn from a multivariate Gaussian distribution A (p, £,) with mean p € R” and limited
covariance ¥, € R"*". Then, the clipped algorithm A, is

<ﬂ§t2335+4>(h—@&BDR (177)

Proof. We know that A, is a d-private query for d(D,D’) = ¢||D — D’||; because of
Lemma 6.3. Thus, we can apply Theorem 6.2 to find a universal bound of the target
dependent BDPL in this situation. Therefore, the idea is to show how the BDPL is
bounded by the target dependent BDPL, and to then apply Theorem 6.2.

BDPL = sup BDPL . (178)
K
PY(S | X =X, X = %)
= su su In 179
K,E) (xK,s,wi—Eﬂﬁb—a pY(S | Xg = XK, X; = $§) ( )
= sup ( sup BDPL(Kji)(xi,x§)> (180)
K \ |z;—2f|<b—a
= sup (sup BDPLk ;(x;, m;)) (181)
‘xi_zﬂgb_a K
= sup BDPL(x;,x)) (182)
|; —x)|<b—a
< "y d(w;, ') (183)
> sup T Tiy X;
el <b-a \ 4(5 =1 +2)
n? ,
= sup ———— +t 1| |z —xle 184
et <b-a \ 4(5 =7 +2) | | (184)
n2
=|—F————+1](b—a)e. 185
M%—n+m+ (b-ae (185)

In egs. (178) and (179) we expand the definition of BDPL. Then, in eq. (180) we use
that the adversary-specific target dependent BDPL is defined equivalently, except it does
not take the supremum over x;, z;. We switch the order of the suprema in eq. (181) to
subsequently plug in the definition of the general target dependent BDPL. Then, we use
Theorem 6.2 to derive eq. (183). Finally, the last supremum can be resolved by writing
out d(z;, z;) and bounding it with (b — a)e. It follows that clipped algorithm A is BDP

)

since the BDPL is limited. O

6.3 Comparison to State of the Art

We now have the Gaussian bound on the BDPL of certain DP algorithms. It applies when
the Pearson correlation coefficient p is small, regardless of the number m of correlated
records. The question remains when the Gaussian bound improves on the general bound
for the BDPL. For a fair comparison, we assume that all n = m records are correlated
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with each other. This is possible if every entry of X is positive. Thus, if algorithm A, is
(b — a)e-DP, it is n(b — a)e-BDP according to the general bound. The following remark
shows that the Gaussian bound improves on the general bound if the Pearson correlation
coefficient p is restricted to be small, i.e., in the order of p ~ %

Remark. For number of records n > 3, range boundaries a,b € R with a < b, privacy
parameter € > (0 and maximum correlation coefficient 0 < p < ﬁ we have

(n—2) + 1) (b—a)e <n(b—a)

4(%—71—1—2
. i<
_— <n
A3 —n+2)
o Lrcm-nd —nto)
-n*<(n—1)(-—n
"= P (186)
1 1
& Zn2§(n—1);—n2+3n—2
) 1
& Zn2—3n+2§(n—1);
N < n—1
P=32 “3n 2

This remark is qualitatively exemplified by Figure 8. It shows the general upper bound
(dashed) for clipped algorithms A,; that are 1-DP, and for multiple tuple sizes n. The
Gaussian bound is shown as a solid black line. The x-axis is the maximum correlation
coefficient p, while the y-axis shows the BDPL. One can see that the Gaussian bound
improves for small correlation coefficients, while the general bound is still smaller for larger
correlations. The higher the number of records n, the lower the maximum correlation p
so that the Gaussian bound improves upon the general bound.

6.4 Empirical BDPL

We have seen that the Gaussian bound is an improvement when correlation is small,
however it does not appear to be a tight bound because it goes above the general bound
for higher correlation (see Figure 8). Therefore, this raises the question how tight the
Gaussian bound is compared to the maximum possible BDPL in realistic situations. To
investigate this, we simulate data sets from a multivariate Gaussian distribution to em-
pirically measure the BDPL for the Laplace mechanism applied to a sum query that clips
records to the range [0, 10].

6.4.1 Simulation

First, we discuss the methodology of the simulation to empirically estimate the BDPL.
The simulation estimates the BDPL for DP privacy leakage ¢ = 1, data tuples of sizes
n € {3,5,7} and for 10 maximum Pearson correlation coefficients p € (0, -%). This upper
bound for p is chosen because the Gaussian bound from Proposition 6.4 only applies for
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Figure 8: General bound compared to Gaussian bound. The x-axis shows the maximum
Pearson correlation coefficient p, plotted for the range in which the Gaussian bound
applies, i.e., p € (0, ﬁ) The y-axis is the BDPL. The solid line shows the Gaussian

bound from Proposition 6.4, the dashed line is the general bound ne of a 1-DP
algorithm A, .

p < ﬁ To estimate the maximum possible BDPL for each p, we use the Monte Carlo
method as described in Section 3.1.2 for each choice of n and p. For each n and p, we test
1000 different multivariate Gaussian distributions, each with a randomly chosen mean p
and limited covariance matrix ,.

6.4.2 Results With Clipping

The results for the maximum empirical BDPL can be seen in Figure 9. For reference,
the figure also includes the minimum of the Gaussian bound and the general bound.
Interpreting the result, it appears likely that the bound is not tight overall. For very
small Pearson correlation coefficients p (e.g., p = 0.1 for data tuple size n = 3) the bound
does appear to be tight. However, the distance between the theoretical and empirical
results increases as we increase the size of the data tuple n or the maximum Pearson
correlation coefficient p.

6.4.3 Results Without Clipping

One possible explanation for the gap between the Gaussian bound and the empirical
results in Figure 9 is the clipping that is applied to the data set. The Gaussian bound
from Theorem 6.2 still applies for d-private algorithms, even if no clipping is used to make
them DP. A possible hypothesis is that only the addition of clipping makes the Gaussian
bound not be tight. The following results indicate that this is not the case.

We use the same setup from Section 6.4.1, except that the sum query does not clip the
values. Now, the general bound does not apply because the algorithm is only d-private,
not DP. Figure 10 shows the results for the maximum empirical target-dependent BDPL.
The empirical target-dependent BDPL is marginally greater than with clipping, and the
gap slightly widens as p increases. However, there remains a comparatively large difference
between the theoretical upper bound and the empirical target dependent BDPL.

26



UNIVERSITAT POLITECNICA
DE CATALUNYA

O AKIT

BARCELONATECH Karlsruher Institut fiir Technologie
10, 10, 10
x  Empirical BDPL
BDPL bound

W s v o N

w s 0o~
w & v oo N

BDPL
BDPL
BDPL

XXXX' 2 2
x X x
X X

Xxxxxxxx

5.0 02 04 06 08 1.0 %).0 0.3 (}.00 0.05 0.10 0.15 0.20
p p p

(a) n=3 (c)n="T7

Figure 9: Empirical BDPL compared to upper bound for Gaussian distributed data. The
x-axis shows the maximum allowed Pearson correlation coefficient p within the
multivariate Gaussian distribution, plotted for p € (0, —=5). The y-axis is the BDPL.

The solid line is the minimum of the general bound and the Gaussian bound.
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Figure 10: Empirical target dependent BDPL compared to upper bound for Gaussian
distributed data. The x-axis shows the maximum allowed Pearson correlation coefficient
p within the multivariate Gaussian distribution, plotted for p € (0, ﬁ) The y-axis is
the target dependent BDPL, evaluated for x; = 0 and x; = 10. The solid line shows the
upper bound for the target dependent BDPL from Theorem 6.2. The empirical target
dependent BDPL for a sum query without clipping is marked by the dots. For reference,
the previous results with clipping are included as crosses.
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6.5 Accuracy

While the Gaussian bound on the BDPL is most likely not tight, the bound is an im-
provement and will be useful for calculating improved utility guarantees of certain BDP
algorithms when correlation is sufficiently small. More specifically, we can determine how
small correlation has to be so that the error of an e-BDP algorithm only increases by a
fixed factor h € R compared to the error of the e-DP Laplace mechanism. If one only
uses the general bound, the error would grow with the size of the data set n as proven by
Corollary 4.4, so this shows an improvement.

Corollary 6.5. Let h > 1 be a real number, let n > 3 be the size of the data tuple, let
€ > 0 be real and let the maximum correlation parameter be

1
P —m———. (187)

Let f,5 be a deterministic clipped sum query so that for any data tuple D € R" we have
fap(D) =Y cap(D);. (188)
i€[n]

Let the data tuples be drawn from a multivariate Gaussian distribution N (u,3,) with
mean p € R" and limited covariance %, € R"*". Let M.y, be the Laplace mechanism.
Then, there exists an e-BDP algorithm B,; with the following property: If M., , is
(o, B)-accurate with respect to f,p, then B,y is (ha, §)-accurate with respect to fi .

Proof. The idea of this proof is to construct algorithm B,; with the Laplace mechanism
as well, but to choose a carefully selected privacy leakage ¢’ < € so that algorithm B, is
(1) e-BDP and (2) (ha, §)-accurate.

First, we determine the accuracy of algorithm M. ;, ,. With Corollary 2.2, we know that
the («, 5)-accuracy of the Laplace mechanism for a given probability 5 € (0, 1] and privacy

parameter € is
1\ Af 1\ b—a
=In|l=)-—=In|=)- . 1
a n(ﬁ> . n(6> . (189)

So this is the (o, 3)-accuracy of M., ,.

We have to show that there exists an e-BDP algorithm B, ;, which is (ha, 8)-accurate. We
choose B, as the Laplace mechanism applied to f,; with an adjusted privacy parameter
e’ > 0. Thus, B, will be ¢’-DP. Observe that B, is d-private with d(D, D) = ﬁHD -
D'||;. Therefore, we can use Proposition 6.4 to show that B,; is BDP. We must choose
¢’ in a way that ensures that the BDPL is limited to €, so that we have e-BDP. With
Proposition 6.4, B, is

TL2

(——— + 1)¢-BDP. (190)
4(% —n+2)
Therefore, to achieve e-BDP, we must have
n? n?
—————+ )= & d=¢- n 191
(4(%—n+2)+ )& =¢ e=c¢ (4(%—n+2)+ ) (191)

o8



UNIVERSITAT POLITECNICA
DE CATALUNYA \
BARCELONATECH oo

Karlsruher Institut fiir Technologie

Now, we can calculate the accuracy of B, because it also uses the Laplace mechanism.
Then, we find an upper bound for this accuracy. Algorithm B, is (o, §)-accurate, with

a':m(%)-§ :ln(%)-b;a-(4(% _":HQ) +1) (192)
Sln(%)'b;a'(4(%+an—2—7~0+2)Jrl) (193)
:m(%)-b;“-(mf_a+1)=1n(%)-b;“-(h—1+1) (194)
zln(%) : b;“ - = ha. (195)

In eq. (193) we use the upper bound of p from eq. (187). Finally, we find that ha > /.
Since B, is (¢, f)-accurate, it is therefore also (ha, §)-accurate. ]

6.6 Discussion

This section has shown that reasonable utility guarantees for BDP sum queries are possible
if correlation in the multivariate Gaussian distribution is very small. More concretely,
the accuracy of a BDP sum queries only deteriorates with a fixed multiplicative factor
compared to DP sum queries if the Pearson correlation coefficient p is in the order p =~ #
Additionally, the Gaussian bound on the BDPL for Gaussian distributed data improves
on the general bound when the Pearson correlation coefficient is smaller than p ~ %
Thus, the results of this section enable the privacy protection of weakly correlated data
drawn from a multivariate Gaussian distribution, while retaining utility.

The aforementioned proofs cannot offer an improvement when the correlation exceeds
p = % In these cases, one would have to fall back to the general bound. However, our
simulations indicate that neither the Gaussian bound, nor the general bound, are tight.
Thus, we hypothesize that higher utility BDP algorithms for data with a multivariate
Gaussian correlation model are possible. Also, it begs the question which steps in the
proofs have not given an exact upper bound. They are of interest for future research to
further improve the bound on the BDPL. The identified steps concern Theorem 6.2.

e In eq. (156), the entries of the inverse matrix 21_<,1n are bounded by the maximal
eigenvalue of the matrix. This is not necessarily tight, especially because it is applied
to an entire column of the matrix in eq. (162). It may be possible to find a better
bound for the sum of the entries of a column in a matrix.

e The minimum eigenvalue of a symmetric matrix is bounded by the lower bound of
the Gershgorin discs on the real number line in eq. (157). This is not tight when the
smallest eigenvalue lies inside such a disc, rather than on its border.

e The numerator and denominator are bounded individually in eq. (165). It is possible
to obtain a tighter bound by forming the derivative of the entire function with
respect to the number of known records k. However, we have performed a preliminary
investigation and the result suggests that the bound is not substantially improved.
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7 Markov Chain Correlation Model

The states of a system in subsequent time steps are often highly correlated. The state of
the current time step depends on the state in the previous time step. E.g., the location
of a user at time step ¢ is highly correlated with their location at time step ¢ — 1. This
phenomenon is modeled by Markov chains [3].

In this section, we study the impact of time-series correlation on the privacy leakage and
utility of BDP algorithms. The main results are Theorem 7.3 and Corollary 7.4: They
provide a new bound on the BDPL of any ¢-DP algorithm when data follows a Markov
chain. We call it the Markov chain bound. For certain Markov chains, this result improves
on the general bound and the bound from the workshop paper by Zhao et al. [57] (see
Section 7.2). In Corollary 7.5, we show that BDP algorithms with only moderate losses
in accuracy compared to their DP counter part are possible when the difference between
large and small transition probabilities in the Markov chain is limited. Finally, we discuss
in Section 7.5 how this result may further be improved in the future, because simulations
once again suggest that the bound is not tight (see Figure 15).

We use the definition of a Markov chain by Behrends [3]. Strictly speaking, it refers to
finite, time-homogeneous Markov chains, i.e., Markov chains with finite state spaces whose
transition probabilities remain constant for every time step .

Definition 7.1 (Markov Chain [3]). Let s € N be the number of states and let X =
(X1,...,X,)" be a random vector. We say X is a Markov chain with transition matrix
P € R**® and initial distribution w € R? if all of the following holds.

1. For all states x,y € [s] and all indices ¢ € [n—1]| we have Pr[X;; = z|X; = y| = P, ..
2. For all states x € [s] we have Pr[X; = z] = w,.

3. The Markov property: The probability distribution of the next state, given the cur-
rent state, is conditionally independent of all other previous states. More precisely,
for all indices i € [n — 1] and for all states 1, ..., z;, ;41 € [s] we have

PriXisi =z | Xo =21, Xi = 2] = Pr[Xip1 = 20 | X = 2. (196)

7.1 Relationship between DP and BDP

This subsection will prove the new Markov chain bound for the BDPL of any <-DP
algorithm whose data follows a Markov chain. The most important result comes in The-
orem 7.3. It shows that the change in the conditional probability of the unknown records
for condition X; = x; and condition X; = z} can be bounded. This bound depends on
the maximum difference between the highest and smallest transition probability in the
Markov chain. This makes intuitive sense — if all transition probabilities are close together,
changing random variable X; from state x; to state x} will not have much of an effect on
the remaining time steps of the Markov chain. However, if the transition probabilities are
far apart, it could have a large effect for many time steps. Subsequently, we use this result
in Corollary 7.4 to bound the BDPL of a DP algorithm on data following a Markov chain
— the Markov chain bound.
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Before we can prove Theorem 7.3, we first require Lemma 7.1 and Lemma 7.2. The
first lemma allows us to remove redundant conditions from probabilities, which will be
useful in many later proofs of this section. The second lemma provides bounds on many
probabilities that appear while proving Theorem 7.3.

Lemma 7.1. Let random vector X be a Markov chain. Let i,j € [n] be indices and
I C[n]\ {i,7} be a set of indices so that there exists an index [ € I that is “in between”
i and j, i.e., we have ¢ > [ > j or ¢ <! < j. Then, for all states z;,z; € [s| and for all
state tuples x; € [s]l/l we have

PI‘[Xl =XT; ’ X[ = Xy, Xj = l’j] = PI‘[)(z = XT; | X] = X[]. (197)

Proof. In order to prove this lemma, we require that the Markov property from Defi-
nition 7.1 holds not only when the full history is known, but also when only the partial
history is known. We will prove that this generalized Markov property follows directly from
the Markov property before proving the statements of the lemma. Let index h € [n — 1]
be arbitrary, and let set J C {1,...,h — 1} only contain indices smaller than h. Let set
L = [h—1]\ J be the complement of J. Then, for any states z,y € [s] and any state tuple
x; € [s]” we have

Pr[ X1 =2 | Xp =y, X; = x/]
= Z Pr[Xp = x| X =y, Xy = x5, X, =xz] - Pr[Xp = x| X, =y, X, = xy]

xr,€[s]I
(198)
= Y PrXpa=a|Xy=y] Pr[X,=x;| X, =y,X, =x/] (199)
xr,€[s]IEl
=PrXpp = [ Xp=y] > PriXp=x.|X)=yX,=x (200)
XLE[S”L‘
= Pr[ Xy =2 | Xy =y (201)

We use the law of total probability to introduce all remaining indices L of the history in
eq. (198). Then, in eq. (199) we apply the Markov property. Now, the first probability can
be pulled out of the sum in eq. (200) because it no longer depends on x;. The remaining
sum adds up to 1 and therefore we only retain the condition of the direct predecessor
Xy =y in eq. (201).

Now we use this generalized Markov property to prove the lemma. The lemma applies in
two cases; either ¢ > [ > j or i < [ < j. We differentiate between these two cases and
begin with the first to prove eq. (197).

Case 1: There exists an index [ € [ with ¢ > 1 > j.

We choose index [ € I with ¢ > [ > j so that no other index in [ lies between ¢ and [.
This means that the set of indices between [ and i — defined as M = {l +1,...,i — 1} —
is disjoint with 7. If M is empty, then eq. (197) follows immediately from the generalized
Markov property because index [ is the direct predecessor of index 1.
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Otherwise, if M # () is not empty, the idea is to use the law of total probability to also
include the random vector X,; in the condition of the probability. Then, we can use
the generalized Markov property and conditional independence to remove the condition
on random variable X;. To do this, we first only look at the conditional probability
Pr[Xy = xu | X; = x7,X; = z;] and show that the last condition is superfluous. Let
X = (Ti41,...,2i-1) " € [s]M be an arbitrary vector of states. We have

PI‘[XM = XM‘X[ = X],Xj = a:j]

:PI'[X1+1 = Tl41y--- 7Xz'—1 = xi_ﬂX] = X],Xj = .CCj] (202)
=Pr[Xj1 =241, ., Xio = 29| X1 = x1, X = 2]
PriX; 1 =2 1| X1 =x71, Xj = 25, Xiy1 = 2141, ..., Xi2 = 732 (203)

:PT[XZ_H = l‘l+1|X] = X[,Xj = l’j]-
i—1
H Pr[Xo, = 2| X =%, Xj = 25, Xip1 = 2415, Xin1 = D1 (204)
m=l+2

1—1
=Pr[Xip1 = 21| X7 =xq] - H PriXp = 2n|Xr = x1, Xip1 = 2141, -+, Xone1 = Tin1]
m=Il+2
(205)

=Pr[Xy = xp| X7 = xg]. (206)

First, we expand the components of random vector X, in eq. (202). Then, in eq. (203),
we rewrite the joint probability of X, as the two parts X;_; and X ;—13. This uses the
fact that a joint probability can be rewritten as

Pr[ANB|C] =Pi[A| C]-Pr[B | C, Al. (207)

Here, event A corresponds to conditions X;,1 = z;11,...,X;_ 2 = x;_o, event B to con-
dition X;_; = ;- and event C to conditions X; = x;, X; = x;. This step is repeatedly
used to fully split X, into its components and derive eq. (204). Then, we use the general-
ized Markov property from eq. (201) for eq. (205): Random variable X;; is conditionally
independent of X, given the direct predecessor X; with index [ € I. Similarly, random
variable X, is conditionally independent of X, given the direct predecessor X,,_. Now,
the joint probability can be written together again, by repeatedly applying eq. (207) in
reverse in eq. (206). We have shown that the condition X; = z; can be removed without
changing the probability Pr[Xy = x5/ | X; = x;].

Now, we use the result from eq. (206) to directly prove eq. (197) of the lemma by applying
the law of total probability. For any state z; € [s] we have

PI'[XZ = $Z|X[ = X[,Xj = l’j]
= Z PI'[XZ‘:I‘Z'|X[:X],X]‘ :l'j,XM :XM] 'PI’[XM:XM|X[:X[,XJ' :Ij]

XJ\/[E[S]UMI
(208)
= Z PI‘[XZ = [L’1|X] = X[,XM = XM] . PI‘[XM = XM|X[ = X[] (209)
XME[S]“\/[I
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=Pr[X; = ;| X; = x/]. (210)

In eq. (209), we use the fact that X; is conditionally independent of X, given index
i—1 € M (see generalized Markov property in eq. (201)). Also, we apply eq. (206) to
the second probability. Then, we derive eq. (210) by once again using the law of total
probability, this time in reverse. Now, eq. (197) from the lemma has been proven for the
case 1 > > j.

Case 2: There exists an index [ € [ with i <[ < j.
Here, Equation (197) from the lemma follows from the first case we have just proven:

_ PrX; =g | Xy =%, X =2 - Pr[X; = o | X = xq]
PriX; =z; | X; = x/]

PI‘[XZ = XT; | X[ = X[,Xj = Ij]

(211)

_ PriX; =z, | X; =x/] - Pr[X; = 2; | X; = x/] (212)
PriX; =z, | X; = x/]

= PI‘[)(Z = Z; | X[ = X[] (213)

We use Bayes’ theorem in eq. (211). The first probability of the numerator is now in the
situation of Case 1, since it is the probability of random variable X, conditioned on X;
and X; with j > [ > i. Equation (197) has already been proven for that case, so we apply
it to derive eq. (212). Finally, eq. (213) follows directly by simplifying and we have proven
eq. (197) for the second possible case.

]

Now we come to the second lemma before we can prove Theorem 7.3. Lemma 7.2 will allow
us to put a bound on probabilities or ratios of probabilities. In Theorem 7.3, this result
will be essential to bound the difference of the conditional probabilities on all unknown
samples of the adversary when conditioning on X; = x; versus X; = .

Lemma 7.2 applies to Markov chains in which all transition probabilities in P are greater
than zero. Additionally, the initial distribution w must be an eigenvector of eigenvalue
1 of the transition matrix P. This distribution w may at first appear like a strong as-
sumption, however it arises naturally: An eigenvector of P with eigenvalue 1 represents
the equilibrium distribution of the Markov Chain, and such an eigenvector always exists
if all entries of P are strictly positive [3, p. 50]. It is called the equilibrium distribution
because the distribution of the states does not change as the Markov chain progresses
from time-step to time-step.

Lemma 7.2. Let X = (Xy,...,X,,)" be a Markov chain with transition probabilities
P € R*** and initial distribution w € R® with the following properties:

e Every cell of P is positive, i.e., for all z,y € [s] we have P,, > 0.
e Vector w is an eigenvector of P to the eigenvalue 1, i.e., w' P =w'.
Then, for any index i € [n] and any state x € [s] we have

min P, < Pr[X; = z] < max Py. (214)
k,le(s] k,le[s]
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Furthermore, for all indices 4, j € [n] with ¢ > j and all states z,2",y,y’ € [s] we have

PriX;, =z | X; =] < A lels] Py
PrX; = o | X; =¢] = mingepq Py

(215)

and
PriX;=z|X; =y < MaXp el Py,

PriX; =o' | X; =y| = ming e Pry

(216)

Proof. We begin by proving eq. (214). First, we show that w — as an eigenvector of P —
not only contains the prior probabilities of X7, but of any random variable X; for i € [n].
Le., the equality Pr[X; = x] = w, holds for any state = € [s] because w is the equilibrium
distribution. Then we can bound the entries of w to prove eq. (214). We use induction to
prove the equality Pr[X; = z] = w,.

Z PriX;, =z | X1 =vy] Pr[X;_1 =y (217)
yEls]

=Y P, (218)
yE|s]

— (w'P), (219)

= w, (220)

We apply the law of total probability in eq. (217). Then, we use the transition matrix
P and the induction hypothesis (Pr[X; ; = x| = w,) to replace the probabilities with
entries of P and w in eq. (218). Then, we rewrite the sum as a matrix-vector product in
eq. (219). Finally, we take advantage of the fact that w is an eigenvector of P in eq. (220).
With the basis Pr[X; = x] = w, (which is the definition of w, see Definition 7.1) and this
derivation, we prove by induction that the entries of w are equal to the prior probabilities
of any random variable X;.

Now we can bound the entries of w, thereby also bounding the probabilities Pr[X; = z].
We prove the upper bound w, < maxy e[ Pr; by contradiction; the lower bound w, >
miny, ;e Pr, follows analogously. Assume that there exists a state y € [s] so that its prior
probability in w is greater than any transition probability, i.e., w, > maxy c[s) Pr,;. This
leads to a contradiction as follows.

wy = (w'P), (221)
=Y Py wy (222)

& (1= Pyyw,=> Puy-wp (223)
k#y
_ Pk,y
S1-P,=) L.y (224)
kty Y
<> wy (225)
k#y
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=1 —w, (226)
Sltw, <1+ P, (227)
s w, < P, (228)

First, we use that w is an eigenvector in eq. (221) and subsequently rewrite the matrix-
vector multiplication. In eq. (225), we apply the assumption that w, is greater than
any transition probability, so Py, /w, must be strictly smaller than one. Equation (226)
follows because the entries of w must sum to one as w is a probability distribution (see
Definition 7.1). Finally, we arrive at the statement w, < P,, which is contradictory to
our assumption that w, is bigger than every P ,. Thus, this assumption was false and
probability w, must be smaller or equal to maxy e[y Py for any state y € [s]. Together
with the lower bound that can be shown analogously, this proves the first statement of
the lemma, Equation (214).

Now, we prove Equation (215). Let indices i,j € [n] be arbitrary with i > j and let
states z,y,y" € [s] be arbitrary. If random variables X; and X are direct neighbors, i.e.,
t = j+ 1, then the probabilities are transition probabilities from matrix P and the bound
follows immediately with

PriX; =z | X; =y _ P, . < MaXp el Py
PriX;=z|X;=vy] Py, mingep P

(229)

In the other case (i.e., i > j + 1), we once more use the law of total probability to make
this tractable. We focus on rewriting the numerator Pr[X; = z | X; = y| in terms of the
denominator. Let states x,y,y’ € [s] be arbitrary. Then we have

PriX;, =z | X; =]

=) PrXi =z | X; =y, X1 = 2] - PriX =2 [ X; =] (230)
z€[s]

=Y Pr[Xi=x| X1 = 2] Pr[X; =2 | X; =y (231)
z€([s]

PriX; . =2 ]X; =y

:ZPY[Xi:“Xj:yl7Xj+1:Z]'P1"[Xj+1:Z‘Xj:y/]'Pr[X.+1—z|X-—y']
J - J

z€[s]
(232)
/! / Pyz
=) PrXi=x | X; =y X =2 PrlXn =2 | X; =] B (233)
z€[s] vz
P
=) PrXi=x | X; =y X =2 PrlXn =2 | X; =] %HPM (234)
z€([s] Mg 1e[s] £k,
P
<PiX,=z|X,=y] MaXy iefs] £kl (235)

miny jeps) Pry

We use Lemma 7.1 to remove X; = z; from the condition of the first probability in
eq. (231) because j + 1 is closer to i. Similarly, we add the condition X; = ¢ in eq. (232)
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by applying Lemma 7.1 in reverse and adding an independent condition. Here, we also
multiply by one (Pr[X;;1 = 2z | X; = ¢/]/Pr[X;41 = 2z | X; = ¢/]) which introduces
Pr[X;i1 = z | X; = ¢/] into the equation. The probabilities in the ratio are replaced by
the corresponding cells in P in eq. (233) because they are transition probabilities. Then,
the ratio is bounded in eq. (234). Finally, we can apply the law of total probability a
second time in eq. (235), but this time conditioned on X; = /. If one divides the last
equation by Pr[X; = z; | X; = 2] (which by assumption is greater than zero), one obtains
Equation (215), which we set out to prove.

Finally, we prove the third and last equation from the lemma, Equation (216), in a sim-
ilar fashion to the one before. Let states x,2’,y € [s] be arbitrary. If random variables
X, and X are direct neighbors (i.e., 7 = i — 1), the ratio can once again be bounded
straightforwardly as it only contains probabilities from P:

PI'[XZ =X ‘ XZ‘,1 = y] P, ma‘Xk,lE[s} Pk,l

=P < 236
PriX; =o' | X;oi =y] Py — mingges Py (236)

Otherwise for j < i — 1 we once more use the law of total probability to rewrite the
probability in the numerator from X; = z; to X; = z.

PrlX; = z| X, =y

=) Pr[X; =x|X; =y, X;1 = 2] - Pr[X;y = 2|X; =] (237)
z€[s]

= Pr[X; = x|X;_y = 2] - Pr[X;y = 2|X; =y (238)
z€[s]

PI‘[)(Z = ZL‘|XZ‘_1 = Z]

GZ[] r[ Y | 1 Z] Pr[XZ — ZU’|X¢_1 — Z] r[ 1 Z‘ J y] ( )
/ sz
=) Pr[X; =a/|X;y = 2] Pr[Xi = 2]X; =y - 5 (240)
z€([s] 2,/
maxy; Pkl
< Pr(X, =2/| X, = 2] - Pr[ X,y = 2| X, =¢]  ————= 241
<3P =i =] Pl =1, =) L (241)
P
= PrX, = 2/|X; =y, X1 = 2] - Pr[X, o = 2 X, =y - @L’P’“ (242)
oy mMing; Ik |
=PrlX; = 2|X; = ]% (243)
’ i=Y mingg Py

Lemma 7.1 is used to drop X; =y from the condition in eq. (238). Then, we multiply by
one (Pr[X; =o' | X;o1 = 2]/ Pr[X; =2’ | X;_1 = z]) to replace Pr[X; =z | X;_1 = 2]
with Pr[X; = 2’ | X;_1 = 2] in eq. (239). The ratio only contains transition probabilities
from P, and thus can be bounded as in eq. (241). We reintroduce the condition X; =y
in eq. (242) using Lemma 7.1 to make it possible to apply the law of total probability
in reverse in eq. (243). If we divide the last equation by Pr[X; = 2’ | X; = y| (which by
assumption is greater than zero), we obtain Equation (216). O

66



UNIVERSITAT POLITECNICA
DE CATALUNYA \
BARCELONATECH oo

Karlsruher Institut fiir Technologie

With Lemma 7.1 and Lemma 7.2 in hand, we are ready to prove Theorem 7.3. It bounds
the difference of the conditional probabilities of all unknown samples of the adversary when
conditioning on X; = z; versus when conditioning on X; = x}. Subsequently, this result is
applied in Corollary 7.4 to bound the BDPL of any e-DP algorithm A. The conditional
probability that is treated in Theorem 7.3 appears while expanding Definition 2.11 of
BDPL using the law of total probability.

Theorem 7.3. Let random vector X = (X1,..., X,,)" be a Markov chain with transition
probabilities P € R**® and initial distribution w € R® with the following properties:

e Every cell of P is positive, i.e., for all k,[ € [s] we have P,; > 0.

e Vector w is an eigenvector of P to the eigenvalue 1, i.e., w ' P =w'.

Let i € [n] be the target index and let sets U C [n] \ {i} and K C [n] \ {i} be disjoint,
with [n] = U U K U {i} and at least one index in |U| > 1. Then, for any unknown states
xp € [s]V!) known states xg € [s]¥ and target states x;, ) € [s] we have

PriXv = xu | X = xu, Xi = 1] _ (%)4 (244)

PriXy =xu | Xk =xk, X; = 2] = \ ming Py
Proof. The main part of this proof is a case analysis distinguishing between different po-
sitions of ¢ in [n] and different sets K, and bounding the ratio of Equation (244) in each
case. When deriving these bounds, we will often utilize Lemma 7.2 to bound probabilities
without any condition, or with the value of one random variable as a condition. However,
we also encounter probabilities that still contain two conditions. To bound these proba-
bilities, we first have to show that a probability with two conditions can be rewritten into
two probabilities with one condition each (given we are dealing with a Markov chain). Let
indices h,i,j € [n| be arbitrary with h <i < j. Let states xp,, z;, z; € [s] be arbitrary.

PI'[X] =Tj | Xh = SCh,Xi = .I‘l] . PI'[XZ = X; ‘ Xh = l’h]
PI'[X] =T ’ Xh = .Z'h]

Pr[Xl = T; ’ Xh = ajh;Xj = l'j] =

(245)

PI'{X] =T ‘ Xh = th]

First, we apply Bayes’ theorem in eq. (245). Then, we use Lemma 7.1 in eq. (246) to
remove condition X, = xj; because index ¢ is closer to j than index h is to j. Now,
the ratio of two such probabilities with two conditions can be expressed and bounded as
follows for any state 2 € [s]:

PI‘[XZ' = xi]Xh = l’h,Xj = 1‘j}
PI‘[Xi = :L’;|Xh = a:h,Xj = Jjj}

_ PriX; = z;|Xi = @] - Pr[X; = @[ Xp = ap] PriX; = ;| Xp = x3]
PriX; = x| X), = xp)] PriX; = x;|X; = 2}] - Pr[X; = 2| X}, = xp)
(247)
_ PI'[XJ = :Ej|X7, = .’El] . PI‘[XZ = $Z|Xh = ,Ih] < maxig; Pkl 2 (248)
Pr(X; = x;|X; = «f] - Pr[X; = 2} | X}, = @] — \ ming Py
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In eq. (247), we use eq. (246) to rewrite both the numerator and the denominator. Then,
we shorten the ratio by Pr[X; = z; | X, = 23] in eq. (248). Finally, Lemma 7.2 can be
applied twice to derive the bound.

Now, we can begin with the main part of the proof: The case analysis for different target
indices ¢ € [n] and sets K C [n] \ {i}. A similar pattern emerges in each case: We
always repeatedly apply Lemma 7.1 to only retain those conditions that are absolutely
necessary (i.e., only the indices closest to i stay in the condition, all others are conditionally
independent). Then, we bound all factors with Lemma 7.2 or Equation (248).

e Case 1: The set K # () contains at least one index.

We apply Bayes’ theorem to rewrite the main probability that appears in Equa-
tion (244). Let states xy € [s]'Y! and xg € [s]¥] and x; € [s] be arbitrary:

PI‘[XU = Xy ’ XK = XK,Xi = ZCZ]

_ Pr[Xi =7 | Xk = xx, Xy = xu] - Pr[Xy = xp | X = Xg] (249)
PriX; = z; | Xg = xg]

We use this result to show the following equivalence for the left hand side of Equa-
tion (244) for any state z € [s]:

PI[XU = XU’XK = XK, Xi = $z] PI“[Xi = IZ'|XK = XK,XU = XU] . PI‘[Xi = x;]XK = XK]

PI‘[XU = XU’XK = XK,Xi = IL’;] - PI‘[Xi = :L’;|XK = XK,XU = XU] . PI‘[XZ‘ = xi]XK = XK]
(250)

This ratio must now be bounded by (%)4 in order to prove Equation (244).

We will accomplish this in each subcase of Case 1.
— Case 1.1: Target index ¢ = 1 is the first index.

Let k; be the smallest index in /. This index k; > ¢ must be bigger than ¢ = 1
because ¢ is the first index and ¢ can by assumption not be included in K.
Equation (250) is equivalent to

_ Pr[X; =z | Xo = xo] - Pr[ Xy = 2 | Xk, = 24, ]

PI'[Xl = Z‘ll | X2 = .1}2] . PI'[Xl =T ‘ Xkl = Z‘kl]
maxy; P 2 maxy; Py !

< (—) < (—) . (252)

minkl Pkl minkl Pkl

(251)

In eq. (251) we use Lemma 7.1 to remove any condition except for the one
closest to ¢. For the first probability, the closest index to ¢ = 1 in the condition
must be index 2 because U and K make up the rest of indices [n] \ {1}. For
the second probability, the closest index to ¢ must be k;. Subsequently, we
bound the ratio by applying Lemma 7.2 twice in eq. (252). Observe that the
ratio B2k P gt at least be 1, so increasing the exponent to 4 can also only

) ming; Pr
increase the upper bound.

— Case 1.2: Index i € [n] is arbitrary with 1 <4 < n. We must further differen-
tiate how the indices in set K are located around .
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x Case 1.2.1: The set K C [n] \ {i} only includes indices smaller than i.
L.e., there exists an index k; € K with k; < 4 so that for all indices k € K
we have k < k.

Then, Equation (250) is equivalent to
PY[Xz' =T; | Xii =21, X1 = $i+1] : PI”[Xz' = 33; | Xk1 = Ikl]

- Pr[Xi = l’; | Xioi =221, Xj1 = Iz’+1] : Pr[Xi =T | chl = l‘kl]
(253)

3 4
< (manszz) < (manlPkl> . (254)

minkl Pkl minkl Pkl

We use Lemma 7.1 in eq. (253) to remove any redundant conditions. Then,
we employ the bound from eq. (248) and Lemma 7.2 in eq. (254) and once
again increase the exponent to 4, which corresponds to the final result we
wish to prove among all cases.

x Case 1.2.2: The set K C [n]\ {i} includes both indices smaller and larger
than index 7. L.e., there exist indices ki, ko € K with k; <7 and ky > i so
that for all indices k € K we have k < k; or k > k.

Then, Equation (250) is equivalent to
Pr(X; = 2| Xio1 = i1, Xig1 = @] - Pr[X; = 2| X, = 2y, Xy = T

CPrX; = 2| Xio = w1, Xip = miga) - Pr[XG = @] Xy, = 2y, Xk, = Ty
(255)

4
< <Imdpkl> , (256)

ming; Py

We use Lemma 7.1 to remove redundant conditions and subsequently em-
ploy Equation (248) twice to find the upper bound.

x Case 1.2.3: The set K only include indices bigger than i. I.e., there exists
an index ko € K with ke > 7 so that for all indices k£ € K we have k > k.

Then, Equation (250) is equivalent to
PriXi=w; | Xicy = i1, Xiy1 = 2] - Pr[X; = 27 | Xi, = @y,

- PI‘[)(Z = ZL’; | Xi—l = mz‘—laXi—l—l = I’Z‘_H] . PI‘[Xl = T; | Xk2 = ZL‘k2]
(257)

3 4
S <manl Pkl) S (maxkl Pkl) ' (258)

ming Py ming Py

— Case 1.3: Target index ¢ = n is the last index.

Let k. be the largest index in K. This index k; must be strictly smaller than
index 7 because 7 = n is the last index and ¢ cannot be included in the set of
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known indices K. Then, Equation (250) is equivalent to

_ Pr[X, =z, | Xpo1 = 2] - Pr[X,, = 2}, | Xy, = 2, ] (259)
Pr(X, =2 | Xpo1 = @y - Pr[X,, = 2, | Xip, = 2, ]
< <manl Pkl)2 < (manl Pkl>4 (260)

minkl Pkl minkl Pkl

e Case 2: The set K = () is empty.

The set of unknown indices U = [n] \ {i} must include every index except for i. We
apply Bayes’ theorem to once more rewrite the main probability that appears in
Equation (244). Let states xi € [s]""! and z; € [s] be arbitrary:

Pr(X; = z; | Xy = xy| - Pr[Xy = x¢]

PriXpy =xy [ Xi =] = PrX, — 1] (261)

We use this result to show the following equivalence for the left hand side of Equa-
tion (244) for any state z; € [s]:
PI‘[XU = Xy | Xz = ZL‘Z] PI'[XZ = T; | XU = XU] . PI'[Xl = ZL‘I]

= J 262
PI'[XU = Xy | Xz = l’;] PI"[XZ = JZ; | XU = XU] . PI'[)(Z = l’z] ( )

Just like in Case 1, this ratio must be bounded by (%)4 in order to prove

Equation (244). We will accomplish this in each of the following subcases of Case 2.
— Case 2.1: Target index i = 1 is the first index. Equation (262) is equal to
PI"[Xl =2 | X2 = :L'Q] . Pl"[Xl = 1‘/1] < <maxkl Pkl)2 < (manl Pk:l>4

Pr[X; =2} | Xy = xs] - Pr[Xy = 2] = \\miny Py ming; Py
(263)

— Case 2.2: Target index i € [n] is arbitrary with 1 < ¢ < n. Then, Equa-
tion (262) is equivalent to

_ PI'[Xl = T; | Xi—l = xi—lyXi—i-l = $i+1] . PI'[Xl = ZL'/]

7

- PI'[Xl = ZL‘; | Xi—l = xi—hXi—i-l = l‘i+1] . PI'[)(Z = LL'Z]
maxy Py \° maxy Py \ *
S ( kl kl) S ( kl kl) . (265)

minkl Pkl minkl Pkl

(264)

— Case 2.3: Target index ¢ = n is the last index. Equation (262) is equivalent to

n

CPr[X, =2, | Xu1 = 2na] - Pr[X, = 1)
S (manl Pkl)2 S (maxkl Pkl)4 ‘ (267)

_ PrX, =2, | Xy = 2] - PrX, = 2

(266)
ming; Py ming; Py

4
The case analysis is complete and all cases have been bounded by (%) . m
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With Theorem 7.3, it becomes possible to directly prove a bound on the BDPL of any
e-DP algorithm that processes data following a Markov chain. Corollary 7.4 applies to
Markov chains with strictly positive transition probabilities that are initialized with their
equilibrium distribution w. It is the Markov chain bound.

Corollary 7.4 (The Markov Chain Bound). Let s € N be the number of states. Let
A [s|* = Y be an e-DP algorithm. Let the data tuples follow a Markov chain with
transition matrix P € R*** and initial distribution w € R® with the following properties:

e Every cell of P is positive, i.e., for all k,[ € [s] we have P,; > 0.

e Vector w is an eigenvector of P to the eigenvalue 1, i.e., w' P =w"'.

Then, A is an (¢ +41n %)—BDP algorithm.

Proof. In order to show that A is a BDP algorithm, we have to upper bound the BDPL.
The BDPL is the supremum over the adversary-specific BDPLs. So we have to consider
every possible adversary (K, i) with target index ¢ € [n] and known indices K C [n]\ {i},
and bound BDPL (g ;. Let set U = [n] \ (K U{i}) be the indices that are unknown to the
adversary. We differentiate between two cases because Theorem 7.3 can only be applied
when there is at least one unknown index, i.e., U # ().

Case 1: There are no unknown indices U = (.

While Theorem 7.3 cannot be applied in this case, it is fortunately easy to reduce the
BDPL of this adversary to the DP privacy leakage: In this case, the adversary knows
every index K = [n] \ {i} except the target index and the adversary-specific BDPL k ;
becomes the same as the DP privacy leakage [55, p. 751]. Thus, we have

maxy; Pkl

BDPL(xy=¢<e+4ln (268)

minkl Pkl ’

Case 2: There is at least one unknown index in U # () for the adversary.

Here, we will be able to apply Theorem 7.3. Let random variable Y represent the output
of A, let set S C Y be measurable and let states xx € [s]Xl and z;, 2} € [s] be arbitrary.
First, we use the law of total probability to rewrite the probability of any result of A given
X; = x;. Subsequently, we employ the fact that algorithm A is DP, as well as the result
from Theorem 7.3, to bound the difference between this probability and the probability
where we condition on the changed target variable X; = 2. Finally, we will use this bound
to limit the BDPL.

PI‘[Y S S‘XK =Xi,X; = .%'z]
= Z PI‘[Y S S‘XK = XK,XZ' = x,-,XU = XU] . PI‘[XU = XU|XK = XK,XZ' = wz] (269)

xp€[s]IV]

= Z PI[Y S S‘XK = XK,Xi = xi,XU = XU] . Pr[XU = XU|XK = XK,XZ' = x;]
xp€[s]IV
PI‘[XU = XU‘XK = XK,Xz‘ = [Ez]
PI‘[XU = XU‘XK = XK,XZ‘ = xﬂ

(270)
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< Z PI‘[YES‘XK:XK,XZ‘:.%'i,XU:XU]'PI"[XU:XU|XK:XK,X1‘:.Z‘;]-

XUE[S]‘U‘
4
maxy; Py
271
< minkl Pkl ) ( )
maxy; Py \*
N <M> Z Pr[Y € S| Xk = xk, X; = z;, Xy = Xyl
ming; Py Mt
Pr[Xy = xy| Xk = xx, X; = @] (272)
P 4
< <maxklkl> e Y Pi[Y € SXk = xx, X; = 2, Xy = xp]-
ming; Py rtl
PI‘[XU = XU|XK = XK, Xi = LL’;] (273)
4
- (mx’“’P’“’> -e° - PrlY € S| X = xx, X; = 2] (274)
ming; Pkl

In eq. (270), we effectively multiply by 1 to introduce the condition X; = z} into the
equation. The ratio can then be upper bounded in the following eq. (271) by employing
Theorem 7.3. Additionally, we use that A is e-DP in eq. (273). Finally, the law of total
probability is applied in reverse in eq. (274).

Now, we use this result in the definition of BDPL k), thereby bounding the BDPL of
every possible adversary with at least one unknown index in U:

PI’[Y es | XK = XK,XZ‘ = [EZ]

BDPL g = 1 975
(Ki) xi,f;.l,lf;(,s "PiY € 5 [ Xx = xx, X; = 7] (275)
4
(mosie) " o= Prly € S | X = xxc, Xi = 7]
< sup In - (276)
mi,xg,xK,S Pr[Y S S | XK = XKaXz = xl]

Pa\! P
= sup In (w) e =41n w +e (277)

5,75 x5 ,S ming Py ming Py

We use the result from eq. (274) in eq. (276). The final bound follows with straight-forward
simplifications.

Since we have bounded the BDPL ;) of every possible adversary (K, i), we also bound

the total BDPL

P
BDPL = sup BDPL ;) < 41n ——* K

: 278
K ming Py ( )

]

7.2 Comparison to State of the Art

The Markov chain bound from Corollary 7.4 must be compared to the existing bounds.
These comprise of the general bound and the bound by Zhao et al. [57]. The result by
Zhao et al. comes with the caveat that it has not been peer-reviewed as it was published
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in a workshop, and the proof is not available. However, we nonetheless include it in the
comparison as it applies under the same conditions as our Markov chain bound.

First, a short overview of all three bounds is given, and subsequently they are compared.
We will introduce parameters v and w to simplify the notation of the bounds comprising
of transition probabilities.

1. All random variables X1, ..., X,, are correlated, so the general bound becomes

BDPL < ne. (279)

The Markov property from Definition 7.1 may lead one to believe that not all random
variables are correlated and the general bound should be lower. However, the Markov
property only implies conditional independence given the direct predecessor state,
not complete independence.

2. The bound by Zhao et al. [57, p. 7] applies when all transition probabilities P, , are
greater than zero. It is

Py
BDPL <e+61n max[]—’y::e—l—ﬁlnw. (280)
z,x’ yEls 7'y
Here, the ratio w is the maximum divided by the minimum transition probability
that lead to the same state y € [s]. The logarithm of w is multiplied by 6.

3. In Corollary 7.4, we have proven the Markov chain bound that also requires positive
transition probabilities. This bound is

xXr P.Z’
BDPL < e+ 4ln 50720 oy ]+, (281)

ming , P

In contrast to Zhao’s bound, v is the maximum ratio of any two transition proba-
bilities. Observe that for any specific Markov chain, we must have v > w. However,
in the Markov chain bound, the logarithm of v is only multiplied by 4.

We begin by comparing the Markov chain bound to the previous result for Markov chains
by Zhao et al. [57].

Remark. For any privacy leakage ¢ > 0, any w > 1, and any 7 > w we have

3 .
e+dlny<e+6lhw & lnfygélnw & Pygw%. (282)

As we can see, it depends on the relationship between v and w whether Zhao’s bound
or the Markov chain bound is smaller. This is exemplified by Figure 12, which shows
two possible Markov chains. Zhao’s bound is smaller for the left Markov chain, while the
Markov chain bound becomes smaller for right one. Figure 11 also shows the situation in
more quantitative terms. For values of v and w in the dotted region, the Markov chain
bound is smaller. E.g., for w = 10, the ratio v can be up to three times larger and the
Markov chain bound is still an improvement. For w = 100, ratio v can be up to v = 1000
for an improvement.

Now, we also compare the Markov chain bound to the general bound ne.
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Figure 11: Comparison of Markov chain bound to Zhao’s bound. The x-axis shows the
values of ratio w while the y-axis shows ratio 7. Both axes are logarithmic. Our Markov
chain bound improves upon Zhao’s bound for values of v and w in the dotted region.
Values in the grid are not possible, because we must have v > w.

0.8 0.8

0.2 0.9 0.2 0.1

0.1 0.9

Figure 12: Two examples of a Markov chain. Each transition probability is drawn next
to the corresponding edge. On the left we see a Markov chain with v =9 and w = 2.
The bound by Zhao et al. is smaller. On the right we see a Markov chain with v =9 and
w = 8. Our Markov chain bound is smaller.
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Remark. For number of records n € N, privacy parameter € > 0, and maximum transition
probability ratio v > 1 we have

e+4lny<ne & 4dlny<(n—1) (283)

-1
£ & y<exp (n4 5) (284)

n—1
& Iny <

Figure 13 shows that the Markov chain bound improves upon the general bound in many
situations. E.g., for an e-DP algorithm with ¢ = 0.5 and data tuple of size n = 80, the
Markov chain bound is an improvement even if the largest transition probability is 10 000
times larger than the smallest. However, while we often see an improvement, this is not
always the case. E.g., for ¢ = 0.5, n = 20 and transition probability ratio v of 100, the
general bound would be smaller. This — along with the comparison to the bound by Zhao
et al. — shows that the Markov chain bound is not always a tight bound.

104 104 104
103 HH 103 103
Y102 Y102 Y102
. 3 ’
100 100 HH ‘H 100
0 200 40 60 80 100 0 20 40 60 80 100 0 200 40 60 80 100
n n n
(a) e=0.5 (bye=1 (c)e=2

Figure 13: Comparison of Markov chain bound to general bound. The x-axis represents

the size of the data tuple, while the logarithmic y-axis shows the ratio . The Markov

chain bound of the BDPL for an e-DP algorithm improves upon the general bound for
values of n and v in the shaded area.

7.3 Empirical BDPL

The Markov chain bound is an improvement in many situations. However, it is not tight
since it does exceed either the general bound and/or Zhao’s bound in certain other situ-
ations (see Figures 11 and 13). Thus, this raises the question how tight the Markov chain
bound is compared to the maximum possible BDPL in reality. To this end, we run Monte
Carlo simulations to estimate the maximum BDPL.

7.3.1 Simulation

First, we discuss the methodology of the simulation to empirically estimate the BDPL.
We estimate the BDPL for DP privacy leakages € € {0.5, 1,2}, data tuples of sizes n = 10
and for transition probability ratios v € {1,...,10}. To estimate the maximum possible
BDPL for each v, we use the Monte Carlo method as described in Section 3.1.2 for each
choice of v and €. We estimate the BDPL of the specific Markov chain shown in Figure 14.
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(a) e=0.5

Figure 15: Empirical BDPL compared to upper bound for Markov chain data. The
x-axis shows the ratio v between the largest and smallest transition probability within
the Markov chain. The y-axis is the BDPL. The solid line shows the upper bound for the
BDPL; the minimum of the Markov chain bound and the general bound. The empirical
BDPL of an e-DP counting query is marked by the crosses. The data has size n = 10.

Figure 14: Markov chain used in the simulations. For any v > 1, this Markov chain has
maximum transition probability ratio 7.

It would also be possible to generate different random Markov chains, however preliminary
simulations showed that this resulted in a lower estimation of the BDPL. The Markov
chain in Figure 14 appears to maximize the BDPL for a given maximum ratio ~.

7.3.2 Results

The results of the simulation can be seen in Figure 15. They are compared to the minimum
of the Markov chain bound and the general bound ne. The empirical BDPL does increase
with a higher transition probability ratio 7, however the results still suggest that the given
bound is not tight. For higher values of ¢, the increase in v appears to have less of an
effect on the empirical BDPL.

7.4 Accuracy

While the Markov chain bound is not tight, it still enables us to give improved utility
guarantees for the Laplace mechanism, when the ratio v is sufficiently small.
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Corollary 7.5. Let h > 1 be a real number, let n € N be the size of the data tuple,
and let € > 0 be real. Let f : [s]* — R be a deterministic query with finite sensitivity
Af < oo. Let M, ; be the Laplace mechanism. Let the data tuples follow a Markov chain
with initial distribution w € R?® and transition probabilities P € R**® with positive entries
Py, > 0 for any k,[ € [s], eigenvector w' P =w' and

maxg; Pkl h—1
— < . 2
minkl Pkl = oxPp ( 4h 6) ( 85)

Then, there exists an e-BDP algorithm B with the following property: If M. ¢ is (a, §)-
accurate with respect to f, then B is (ha, §)-accurate with respect to f.

Proof. By applying Corollary 2.2, we know that M, s is («, f)-accurate with respect to
f with 5 € (0,1] and a = ln(%) : % because M.  is the Laplace mechanism.

We have to show that there exists an e-BDP algorithm that is (ha, §)-accurate with
respect to f. We accomplish this by also applying the Laplace mechanism to f — however
with a smaller DP privacy leakage ¢’ — so that the resulting ¢’-DP algorithm B is e-BDP
according to Corollary 7.4.

We choose the DP privacy leakage €' as follows, and ensure that it is greater than zero.

maxyg; Pkl

"= —41 2
gi=c¢ n iy Py (286)
h—1 h—1 1
25—4lnexp<4h 5):5—4( P 8)28—(1—E>8 (287)

1
_L, (258)
>0 (289)

Per Corollary 7.4, algorithm B is (¢' + 41n 22L:)_BDP, i.e., e-BDP.

ming; Py

We can calculate the accuracy of B because it is also using the Laplace mechanism.
Algorithm B is (o/, §)-accurate, with

(L) A (LY. Af

“n(5) % () .
1\ Af

= (E)E (291)
1y A

=1In (E)-?f-h:ha. (292)

In eq. (291) we apply eq. (288).

Since algorithm B is (o, f)-accurate, it is also (ha, §)-accurate because o < ha.
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Figure 16: Relative accuracy of an e-BDP algorithm to an e-DP algorithm for Markov
chain data. The x-axis shows different factors h while the logarithmic y-axis shows the
transition probability ratio . Each line indicates the maximum transition probability
ratio v of a Markov chain so that the error of an e-BDP algorithm B is at most h times
greater than the error of an e-DP algorithm M., ;.

The statement of Corollary 7.5 is visualized in Figure 16. Let algorithm M, ; be e-DP
with the Laplace mechanism, and let M, ; be (o, f)-accurate with respect to f. Then
Figure 16 shows the maximum transition probability ratio v for which we know exists
an e-BDP algorithm B with (ha, §)-accuracy. The figure shows that in order to provide
similar utility guarantees to DP, either the BDPL bound ¢ has to be larger than 5, or the
ratio v between different transition probabilities must be smaller than 3.

7.5 Discussion

In this section, we have derived the Markov chain bound on the BDPL of any -DP
algorithm on data that follows a Markov chain. We have shown that it improves upon
previous results by Zhao et al. and the general bound under certain conditions. The
Markov chain bound has allowed us to provide new utility guarantees in Corollary 7.5 for
algorithms utilizing the Laplace mechanism. However, when one wishes to give reasonable
privacy guarantees with BDP (i.e., ¢ < 5), then the utility improvements are limited to
situations in which the largest transition probability is at most three times larger than
the smallest. This is visualized for different BDP privacy leakages ¢ in Figure 16.

However, empirical simulations suggest that the Markov chain bound is not tight, and
better utility guarantees may be possible if one can further refine the upper bound on the
BDPL of DP algorithms processing data that follows a Markov chain. While it is out of
the scope of this thesis, we nonetheless identify the following parts in our proofs that may
be viable for improvement in the future.

1. In Theorem 7.3, we have bounded the difference in the conditional probability when
changing from condition X; = z; to X; = 2. The bound is 4*. The only equation
in our case analysis that required the bound ¥* — in place of 7 or 7?2 like the other
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cases — is eq. (256). Finding a tighter bound for eq. (256) may be possible because
it actually only consists of two probability ratios, not four.

2. In Corollary 7.4, we bound the BDPL by applying the bound from Theorem 7.3
to any conditional probability for the unknown random variables (see eq. (271)).
Even if Theorem 7.3 is tight for some instantiations x; of the unknown random
variables Xy, it will not be tight for all of them. Here, an improved corollary could
use different (tighter) bounds for different classes of instantiations x;;. However, we
suspect that this would require making more assumptions about the algorithm A,
as the probability distribution of the output Y of algorithm A determines how these
multiple bounds would be weighted in the final result.
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8 Utility Experiment

In this section, we present our utility experiment using real-world data sets. The general
idea is to test the utility of BDP algorithms that are created by taking DP algorithms and
using the applicable bounds to calculate their maximum BDPL (i.e., the general bound
from Theorem 4.2, the Gaussian bound from Proposition 6.4, the Markov chain bound
from Corollary 7.4, or the bound by Zhao et al. [57]). We use data sets that correspond to
genomic data, a multivariate Gaussian correlation model, or a Markov chain, respectively.

8.1 Objective

In general, our objective is to empirically investigate the utility improvements by our
bounds over the state of the art bounds in real-world situations. Here, the state of the
art is the general bound. While we were first to prove the general bound for BDP, it had
already been common practice to multiply the DP privacy leakage by the number m of
correlated records to estimate the maximum privacy loss due to correlation attacks [10].
For Markov chain data, the state of the art is extended by the bound by Zhao et al. [57].

For genomic data, we have shown that the general bound is nearly tight. Thus, we cannot
investigate an improvement over the general bound in this situation. Here, our objective is
to instead investigate the effect of parameter m on the utility of BDP algorithms created
with the general bound.

For data with a multivariate Gaussian correlation model, we have found the Gaussian
bound which improves over the general bound when the Pearson correlation coefficient p
is limited by ~ % Therefore, the Gaussian bound offers an improvement either when the
data set is small, or the correlation between all records is weak. Specifically, the BDPL of

an e-DP and d-private algorithm is

n?
BOPL< [— 1 1] 293
_<4(%—n+2)+ )8 (293)

In the utility experiment, we investigate the utility improvement over the general bound
for a real world height data set.

For Markov chain data, we have also found a new bound, the Markov chain bound. The
BDPL of any e-DP algorithm is bounded by

Pya
BDPL <&+ 4In max —2%. (294)

walyy Py g

This bound must also be compared to the bound by Zhao et al.:

Pyo
BDPL < & + 6Inmax —2=. (295)
9,y Py’,m

We found the new Markov chain bound improves on the general bound and Zhao’s bound
for certain Markov chains in Section 7.2. We compare the effect of the three different
bounds on utility for real-world activity data.

80



UNIVERSITAT POLITECNICA *‘(IT
DE CATALUNYA
BARCELONATECH oo

Karlsruher Institut fiir Technologie

This section also gives us the opportunity to compare the benefits and drawbacks of our
three BDPL bounds between each other. We have identified three important differences:

e The Markov chain bound is a sum of € and a fixed ratio, while the other bounds
are multiplicative in . This can be a benefit when working with Markov chain
data because larger DP privacy leakages £ do not increase the BDPL as strongly.
However, it can also be a drawback for smaller DP privacy leakages. Here, the
general bound me can become arbitrarily small for a fixed m by using a sufficiently
small DP privacy leakage . This is similar with the Gaussian bound In contrast,
the minimum Markov chain bound is BDPL < 4Inmaxg g/ 4., P , even when DP

privacy leakage ¢ is set to zero. We will see this disadvantage exemphﬁed in the
utility experiment.

e Another notable difference is the dependence on the size of the data set n. The
Gaussian bound and the general bound both increase with the size of the data set,
while the Markov chain bound stays constant. This is of course an advantage of the
Markov chain bound. We test the effect of this advantage on utility by experimenting
with Markov chain data of different sizes n and comparing the performance of the
general bound and the Markov chain bound.

e Finally, we also compare how restrictive the assumptions of the bounds are. The gen-
eral bound is applicable to any data distribution and any DP algorithm. The other
two bounds make assumptions about the general distribution and its specific param-
eters. In detail, the Gaussian bound requires a multivariate Gaussian distribution
with equal variances and small Pearson correlation coefficients. It also requires from
the algorithm that it is both DP and d-private with the ¢;-distance. The Markov
chain bound requires a Markov chain starting in its equilibrium distribution and
with no transition probabilities that are zero. In contrast to the Gaussian bound, it
applies to any DP algorithm. Overall, the general bound clearly has an advantage in
this category. We will also see in the experiments that it can be applied regardless
of the type of data.

8.2 Data Sets and Queries

Here, we present the data sets and the queries we use in our experiment. We also explain
which correlation model fits to each data set. We work with three types of data:

e 1000Genome phase 3 data: This data set contains the alleles of 2504 persons
for over 88 million positions in the genetic code. It originates from a major study on
human genetic variation [2]. In our experiment, we use the first 1000 recorded allele
pairs of chromosome 22. Thus, we have 1000 data sets, each with 2504 records.

Here, the data comes from a Genomic distribution. The authors state that “individu-
als and available first-degree relatives (generally, adult offspring) were genotyped” |2,
p. 1], but it is not known how many of the participants are directly related to each
other, i.e., the exact pedigree graph G is not given. In Section 8.4.1, we show results
for different assumptions about G.
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On this data, we execute a counting query that counts the occurrences of the allele
pair homozygous-major, i.e., BB.

Galton height data: A historical data set of heights of individuals [16]. Each of
the 897 records contains the height of a person, their gender, an identifier for their
family, both their parents heights, and the number of children in their family. The
data is collected from 205 different families. For our experiment, each of the 897
records is turned into a single data set of size three, containing the heights of the
parents and the height of the child. We end up with a total of 897 data sets, each
containing three records.

We assume that the data sets are drawn from a multivariate Gaussian distribution
with three correlated records, because height closely follows a Gaussian distribu-
tion [7] and because the height of a child is correlated with the heights of their
parents [33]. In a multivariate Gaussian distribution, all correlation between vari-
ables is linear [43, p. 29], and linear models have been used in the literature to model
the inheritance of height [33].

We execute a sum query on each data set. The records are clipped to the range of
60 to 80 inches (about 1.5 to 2 meters).

Activity data: Each record in this data set contains the number of steps an in-
dividual has taken in a five minute interval [35]. It is a time-series of consecutive
intervals from October to November 2012. We prepare the data by replacing each
record with 0 steps by state “inactive”, and each one with more than 0 steps by
state “active”. We model this data set as a Markov chain with the two states active
and inactive. For our experiment, we prepare two versions of this data set:

— Data for single days: We split the data set into many data sets, each corre-
sponding to the activity states of a single day. We end up with 61 unique data
sets, each with n = 288 records.

— Complete data: The data of all days is combined into a single data set with
n = 17568 records.

On these data sets, we execute a counting query for the number of active states.

Overall, we end up with the following groups of data sets:

1
2
3
4

8.3

A total of 1000 genomic data sets, each containing 2 504 records.
A collection of 897 height data sets, each with three records.
A total of 61 activity data sets, each comprising 288 records.

One activity data set with 17568 records.

Experiment

The experiment measures utility for BDP algorithms with maximum BDPL ¢ € (0, 20].
This includes the range of privacy leakages ¢ € (0,5) that enable sound theoretical privacy
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Figure 17: MSE of BDP counting query on genomic data for different maximum family

sizes m. The x-axis shows the privacy leakage ¢ of the BDP query. The y-axis shows the
MSE compared to the deterministic counting query.

guarantees, and the higher range of ¢ € [5,20)] that empirically show resilience to certain
privacy attacks. For each group of data sets, we identify the BDPL bounds that apply
in this case. For each applicable BDPL bound, we use the Laplace mechanism to create
an algorithm that fulfills e-BDP according to the BDPL bound. In our experiments, we
quantify utility by measuring the mean squared error (MSE) of a BDP algorithm to the
deterministic ground-truth query. The error is averaged over all data sets in a group. If
the group only contains one data set, we execute the BDP algorithm 1000 times on the
same data set and take the MSE of all of these results.

8.4 Results

Here, we present the results of the experiment for each type of data. To put the size of
the MSE into perspective, we also mention the average result of the deterministic query
for each group of data sets. In this section, we refer to the DP privacy leakage by 7, to
avoid confusion with the maximum BDPL ¢.

8.4.1 Genomic Data

For genomic data, we have shown that the general bound of BDPL is nearly tight. Thus,
we use the general bound along with the Laplace mechanism to create a BDP counting
query for different assumptions about the maximum number of correlated records m.
Here, m corresponds to the size of the largest family in the data. For these data sets,
the deterministic counting query has an average output of 40.29 occurrences of allele pair
BB. The utility results for the 1000 genomic data sets are seen in Figure 17. The MSE
increases when the number of correlated records increases.

8.4.2 Height Data

As explained in Section 8.2, we assume that the height data is drawn from a multivariate
Gaussian distribution. We require the maximum Pearson correlation coefficient p for the
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Figure 18: MSE of BDP sum query on height data with n = 3. The x-axis shows the

privacy leakage € of the BDP query. The y-axis shows the MSE compared to the
deterministic sum query on a logarithmic scale.

Gaussian bound. The empirical Pearson correlation coefficient in our height data sets is
0.275 between child and father, 0.202 between child and mother, and 0.074 between father
and mother. Thus, we have a maximum Pearson correlation coefficient of p = 0.275. For
n = 3, Proposition 6.4 tells us that the Laplace mechanism A, ; applied to a sum query
f is e-BDP, with

n? 9
e=|— 11|7r= +1) 7~ 1.8537 296
(M%—n+$ ) (qﬁ%—3+m ) (296)

In comparison, the general bound tells us that we have ¢ = m7 = 37 for algorithm A, ;.

The deterministic sum query has an average output of 200 = 2-10? inches for each family.
The results for the Gaussian bound and the general bound for the 897 height data sets are
seen in Figure 18. We see that the algorithm using the Gaussian bound performs better.

8.4.3 Activity Data

Here, we assume that data comes from a Markov chain. Thus, we can apply the general
bound, our Markov chain bound, or the bound by Zhao et al. For the latter two, we
require the transition probabilities of the Markov chain. We calculate them empirically
from the data set containing all 17 568 records and receive

Pr[X;;1 = inactive | X; = inactive] = 0.882 (297)

Pr[X;,; = active | X; = inactive] = 0.118 (298)

Pr[X; 1 = inactive | X; = active] = 0.305 (299)

Pr[X;1 = active | X; = active] = 0.695. (300)

Thus, with the general bound the maximum BDPL of a 7-DP algorithm becomes ¢ = nr.

Our Markov chain bound gives ¢ = 74+ 41n 2882 — 7 1 8,05 and the bound by Zhao et al.

0.118
ise=7+6In3%9 =7 410.64.
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(a) Single day data sets of size n = 288. (b) Complete data set of size n = 17 568.

Figure 19: MSE of BDP counting query on activity data. The x-axis shows the privacy
leakage € of the BDP query. The y-axis shows the MSE compared to the deterministic
sum query.

The utility results for the 61 daily activity data sets with n = 288 each are seen in
Figure 19a. Here, the average deterministic output is 80 = 8-10! occurrences of the active
state. We see that our Markov chain bound only provides results for ¢ > 9 and the bound
by Zhao et al. only for ¢ > 11. The reason for this becomes clear when looking at the
bounds in this situation. Since the DP privacy leakage 7 > 0 must be greater than zero,
our Markov chain bound for the BDPL is at least 8.05 and Zhao’s bound is at least 10.64.
In contrast, the general bound can provide an e-BDP algorithm for any ¢ > 0. However,
it performs worse than the Markov chain bound and Zhao’s bound for ¢ > 9 and ¢ > 11
respectively. Our Markov chain bound outperforms Zhao’s bound for any privacy leakage
in this situation, and it outperforms the general bound for ¢ > 9.

The results for the complete activity data with n = 17568 records are seen in Figure 19b.
The deterministic result is 4250 = 4 - 103 occurrences of the active state. The results look
similar to Figure 19a, however the error of the algorithm using the general bound has
increased sharply while algorithms with the Markov chain bound or Zhao’s bound remain
stable. This is because the general bound scales with the size of the data set n, while the
other two bounds are independent of n.

8.4.4 Discussion

The results show that our newly proven Gaussian bound and Markov chain bound can
improve on the utility of state of the art bounds, on real-world data when BDP algorithms
are created by using DP algorithms. Additionally, we have seen that the utility of the
general bound is very sensitive to the number of correlated records m.
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9 Conclusion

In this thesis, we have investigated the utility of Bayesian differential privacy (BDP) for
correlated data. We focused on Bayesian differential privacy because it applies to any
correlation model and we found that many other semantic privacy notions for correlated
data are variations of BDP. Our investigation provides both formal and empirical results.

We have investigated the relationship between DP and BDP. Although similar results
existed for other semantic privacy notions, we are first to prove that e-DP implies me-BDP
where m is the number of correlated records. This result is tight if arbitrary correlation
within the data is possible. We also improved on this result when restricting the correlation
model to a multivariate Gaussian distribution with Pearson correlation coefficient below
p = %, or for Markov chain time-series when the difference between transition probabilities
is limited. Simulations of DP algorithms under these conditions have indicated that these
two results can be refined further. We have suggested multiple possible locations in our
proofs where more analysis may lead to an improved bound in the future.

The proofs on the relationship between DP and BDP enabled us to derive (a, )-accuracy
bounds. We have found that algorithms fulfilling BDP can offer high utility in the following
situations: (a) When the number of correlated records m in the data tuple of size n > m
is sufficiently small. How small m must be depends on the specific task to be solved, and
the subjective error-tolerance of the data analyst. (b) When the data has a multivariate
Gaussian correlation model and the strength of correlation is very small, i.e., the Pearson
correlation coefficient can be bounded to p ~ # In this case, all records may be correlated
and utility guarantees similar to DP algorithms are still possible for sum queries. (¢) When
the data is a time-series of subsequent states following a Markov chain and the transition

probabilities are sufficiently similar. Again, in this situation all n records are correlated.

We have also found situations in which it was possible to prove that the utility of any e-
BDP algorithm must be poor, assuming that we give decent privacy guarantees ¢ € (0,5):
(a) When we make no assumptions about the correlation model and up to all n records
may be correlated. (b) When performing a counting query on genomic data where all
persons in the underlying data may be part of the same core family.

Additionally, we have tested the utility of BDP algorithms on real-world data. The BDP
algorithms were created from DP algorithms using the proven relationship between DP
and BDP in the different situations. This experiment has shown that our new Gaussian
bound and Markov chain bound can improve utility over the state of the art in practical
applications. Additionally, we have seen that the utility of algorithms created with the
general bound is very sensitive to the number of correlated records m.

Overall, this thesis contributes new knowledge in which situations BDP algorithms can
perform with high utility, and in which they cannot. This helps practitioners decide when
limiting the BDPL is a viable method to protect against privacy attacks that exploit cor-
relation between records. We also improve the understanding of the relationship between
the privacy notions DP and BDP. This enables the use of existing DP algorithms as BDP
algorithms. We intend to publish the results in an international conference to be decided.
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Table 4 is a collection of terms that occur multiple times throughout the thesis and may
require explanation. If the term is explained in more detail in the thesis, then this is
referenced in the glossary.

Term

Description

(o, B)-accuracy

A utility metric of an algorithm A with respect to a ground truth
function f. It states that an error greater than a occurs with a
probability less than 3. See Definition 2.5.

Adversary (K1)

An adversary as defined by Bayesian differential privacy leakage.
The given adversary knows the values of the data points with
indices in set K, tries to infer the value of data point with index
7, and does not know the remaining data points with indices
U =[n]\ (K U{i}). See Definition 2.11.

Allele

A singular piece of genetic information. Humans have a pair of
alleles at each position because they inherit one allele from each
parent. See Section 5.

Bayesian differential
privacy

A privacy notion that takes correlation between data points into
account. It limits the maximum Bayesian differential privacy
leakage of an algorithm A. See Definition 2.12.

Bayesian differential
privacy leakage

The logarithm of the maximal multiplicative difference in the
output distribution of an algorithm .4 when the value of a single
record changes. Also takes correlation between data points into
account. A smaller Bayesian differential privacy leakage indicates
stronger privacy protection. See Definition 2.11.

Bayes’ theorem

A theorem in probability theory. For any events A and B we
have Pr(A | B) = Pr(B | A) Pr(A)/ Pr(B).

BDP

See Bayesian differential privacy.

BDPL

See Bayesian differential privacy leakage.

Counting query

A function that calculates the number of entries in a data tuple
that fulfill a certain predicate.

Data tuple D

A tuple with n records D = (x1,...,2,)" € X™. See Section 2.
Has the same semantic meaning as a data set. However, a tuple
with a fixed order was notationally more convenient in this thesis.

Differential privacy

A privacy notion that limits the logarithm of the maximal mul-
tiplicative difference in the output distribution of an algorithm
A when a single record changes and all other records stay the
same. See Definition 2.1.

DP

See differential privacy.
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d-privacy

A generalisation of differential privacy where the privacy leakage
depends on the distance d between two data tuples. See Defini-
tion 2.6.

Free-lunch privacy

A privacy notion introduced by Kifer et al. [26] to demonstrate
that perfect privacy and utility is impossible. A free-lunch private
algorithm must have indistinguishable outputs for any two data
tuples D, D’. See Definition 2.10.

Gaussian bound

The bound of the BDPL of an ¢-DP and d-private algorithm
that applies when data has a multivariate Gaussian correlation
model. See Proposition 6.4.

General bound

The bound of the BDPL of an e-DP algorithm that applies in
any case. If the maximum number of correlated records in the
data is m, then we have BDPL < me. See Theorem 4.2.

Known indices K

See adversary (K, 1).

Laplace mechanism

M. ¢

A mechanism that can take a function f and render it e-
differentially private by adding Laplacian noise to its output.
See Definition 2.4 and Theorem 2.1.

Law of total proba-
bility

A theorem in probability theory. For any event A and finite or
countably infinite set of events B = {B,..., B,} with B; and
B; disjoint for any ¢,j € [n] and Pr(By VvV ---V B,) = 1 we have
Pr(A)=>"" Pr(A| B;) - Pr(B)).

Markov chain bound

The bound of the BDPL of an e-DP algorithm that applies when
data follows a Markov chain. See Corollary 7.4.

Pearson correlation
coeflicient

A scalar value to measure linear correlation between two random
variables. See Definition 2.9.

Sum query

A function that calculates the sum of all entries of a data tuple.

Target index ¢

See adversary (K, 1).

Unknown indices U

See adversary (K, 1).

Table 4: Glossary
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