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Motivation Without further assumptions For the same confidence level, the upper
bound on the query error o increases sharply:

® Dependencies among data records are B Privacy decreases linearly proportional to Laplace mechanism
present in most of real world scenarios. number of correlated records: 190 — ingependence
m Bayesian DP extends DP to account for the of ot
effect of correlations in privacy leakage. e-DP = me-BDP s o T
m Current BDP mechanisms suffer from poor
utility and lack applicability. This result is tight! Even if p — 0.
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Impossibility Result: We cannot
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a under DP

O\@ protect against arbitrary correlations We need to focus on specific distributions. In this
- and provide utility at the same time. paper we analyze Gaussian and Markov models.
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— Multivariate Gaussian Correlation — Markov Model
Main result Main result
m | et M be an g{;-private mechanism, m et M be an -DP mechanism,
B input data drawn from a multivariate Gaussian distribution B nput data sampled form Markov chain with transition matrix P € R5*®
B p(m-2) <1 isthe maximum correlation coefficient. and initial distribution w € R® with the following properties:
Then, M is Bayesian d-private with (H1) Forall x, y € S we have Py, >0and,  (H2) wP = w.
d(x, x") < m +1 ] glx’ = x|. Then, M is an (¢ + 4 Iny)-BDP mechanism where v = r;?:xyi,fy
T 40 -m+2) yes Py
B \We extend metric privacy to Bayesian metric privacy. Previous mechanism Ours | @ vs. £ (fixed f = 0.05)
® Using clipping as preprocessing step, ¢,(D); = max(a, min(b, D;)), Py, >0 P, >0 |
we recover BDP: stationary stationary .. « Sotais1ps 08
> lazy . \_ < st
_ ™ 1) Me-BDP. binary - L
4(5 —m+ 2) symmetric 10°
g >0 g > 41In(y) |
where M is the diameter of the interval | = [a, b]. A
Impact on Utility for Real Databases
Galton, n =897, m= 3. Electricity, n=m = 731. Activity, n = m = 17 568.
103? : 1055
® From our theorems: Noise | 8 Generél BQuUng/SOTA 103? X\x"‘ﬁ% " warkov (80) 1045
recalibration of the Laplace * {paussign Bound | » Markov (80)
mechanism = BDP. + DP Query 107 Markov (70) 103.
m Substantial utility gains @ o a Markov (90) . 102_% ) Slzrr‘g\a/'BBoou“n”dd
compared to the standard ; 10+ + DP Query
bound. Lol + DP Query
® Markov bound independent of \\_\
] TF 109 ;
n = huge improvement for . : Wm
large datasets.
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— Theoretical Utility Metric: (o, 8)-accuracy, i.e., Pr[|g(D) — M(q(D))| > a] < B. Specifically, 8 = 0.05, i.e., 95% confidence interval.
x Empirical Utility Metric: The upper bound of a (1 — B) confidence interval for the absolute query error.

Conclusion

We prove that BDP is a suitable solution for privacy-preserving data analysis when correlations are structured, e.g., small groups, weak Gaussian
correlations, or time-series data.
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