

Balancing Privacy and Utility in Correlated Data

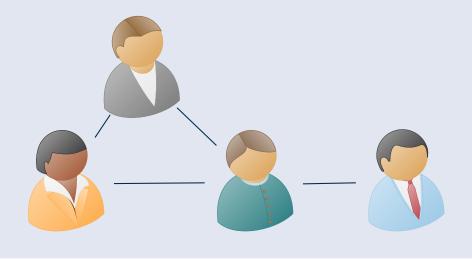
Paper

A Study of Bayesian Differential Privacy

Martin Lange^{KIT} | **Patricia Guerra-Balboa**^{KIT} | Javier Parra-Arnau^{UPC} | Thorsten Strufe^{KIT}

Motivation

- **Dependencies** among data records are present in most of real world scenarios.
- Bayesian DP extends DP to account for the effect of correlations in privacy leakage.
- Current BDP mechanisms suffer from poor utility and lack applicability.



Without further assumptions

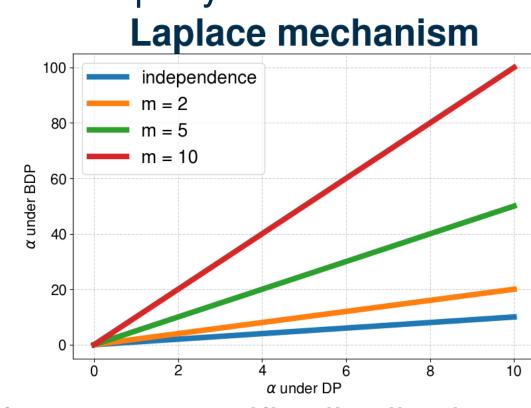
Privacy decreases linearly proportional to number of correlated records:

$$\varepsilon ext{-DP} \Rightarrow m\varepsilon ext{-BDP}$$

This result is tight! Even if $\rho \to 0$.

Impossibility Result: We cannot protect against arbitrary correlations and provide utility at the same time.

For the same confidence level, the upper bound on the query error α increases sharply:



We need to focus on specific distributions. In this paper we analyze Gaussian and Markov models.

____ Multivariate Gaussian Correlation ____

Main result

- Let \mathcal{M} be an $\varepsilon \ell_1$ -private mechanism,
- input data drawn from a multivariate Gaussian distribution
- $\rho(m-2)$ < 1 is the maximum correlation coefficient.

Then, \mathcal{M} is Bayesian d-private with

$$d(x,x') \leq \left(\frac{m^2}{4(\frac{1}{\rho}-m+2)}+1\right)\varepsilon|x'-x|.$$

- We extend metric privacy to **Bayesian metric privacy**.
- Using clipping as preprocessing step, $c_l(D)_i = \max(a, \min(b, D_i))$, we recover BDP:

$$\left(\frac{m^2}{4(\frac{1}{\rho}-m+2)}+1\right)M\varepsilon\text{-BDP}.$$

where M is the diameter of the interval I = [a, b].

Markov Model_

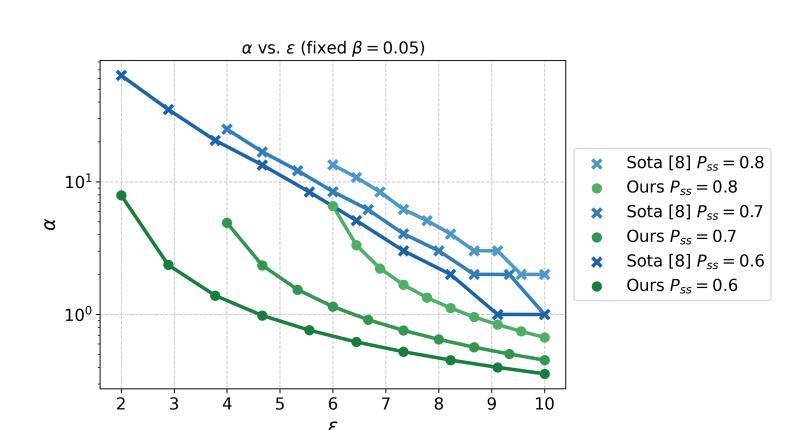
Main result

- Let \mathcal{M} be an ε -DP mechanism,
- lacktriangle input data sampled form Markov chain with transition matrix $P \in \mathbb{R}^{s \times s}$ and initial distribution $w \in \mathbb{R}^s$ with the following properties:

(H1) For all
$$x, y \in \mathcal{S}$$
 we have $P_{x,y} > 0$ and, (H2) $wP = w$.

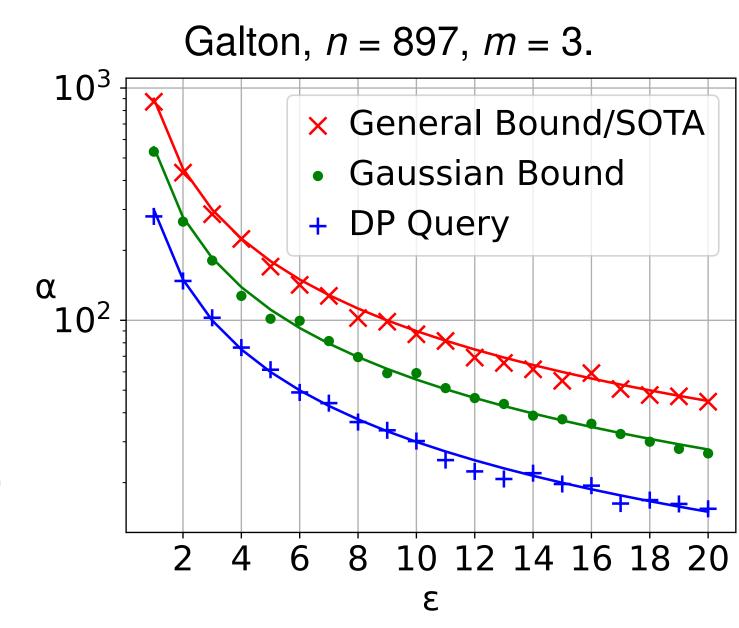
Then, \mathcal{M} is an $(\varepsilon + 4 \ln \gamma)$ -BDP mechanism where $\gamma = \frac{\max_{x,y \in \mathcal{S}} P_{xy}}{\min_{x,y \in \mathcal{S}} P_{xy}}$.

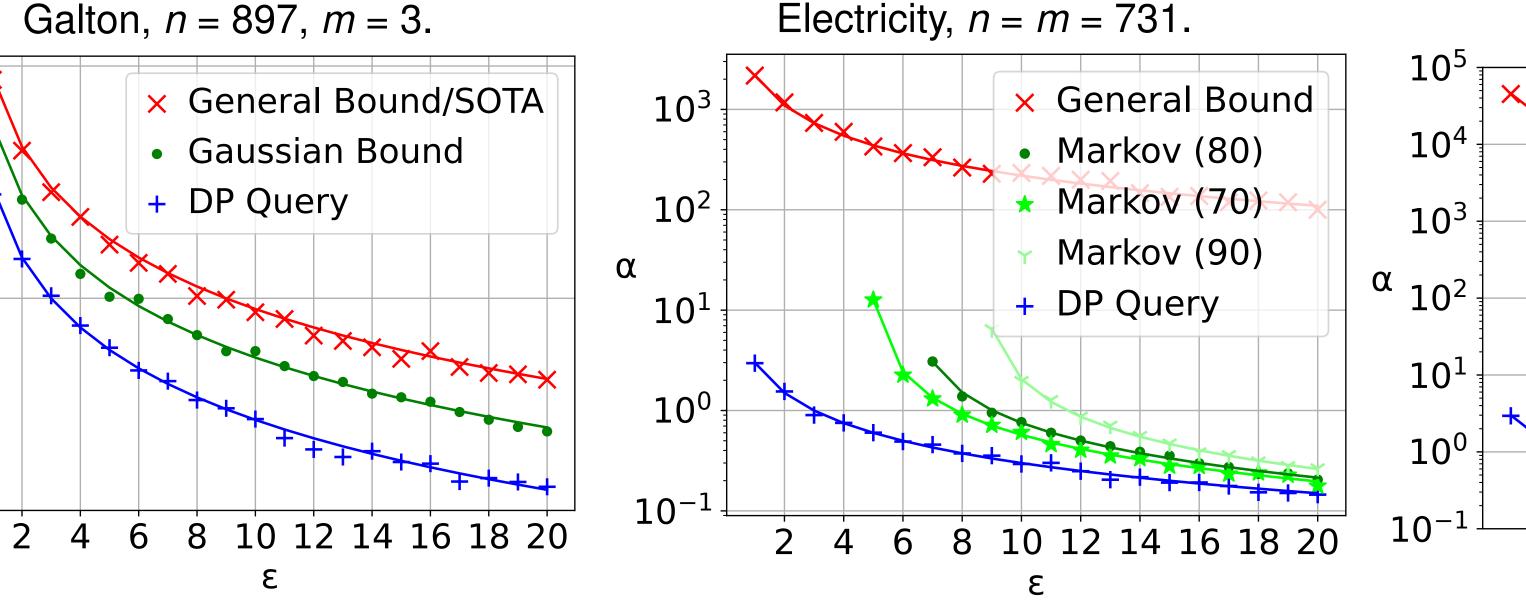
Previous mechanism	Ours
$P_{xy} > 0$	$P_{xy} > 0$
stationary	stationary
lazy	
binary	
symmetric	
$\varepsilon' > 0$	$\varepsilon' > 4 \ln(\gamma)$

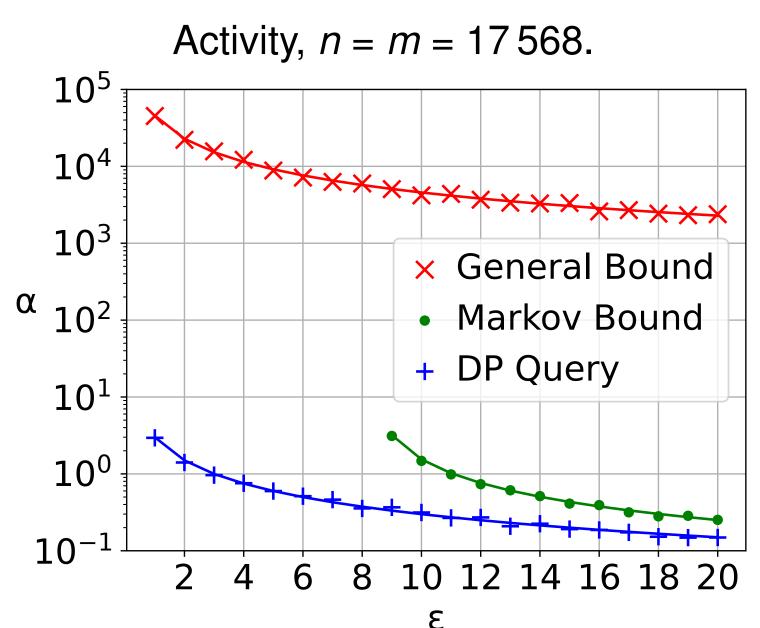


Impact on Utility for Real Databases

- From our theorems: **Noise** recalibration of the Laplace mechanism \Rightarrow **BDP**.
- Substantial utility gains compared to the standard bound.
- Markov bound independent of $n \Rightarrow \text{huge improvement for}$ large datasets.







- Theoretical Utility Metric: (α, β) -accuracy, i.e., $\Pr[|q(D) - \mathcal{M}(q(D))| \ge \alpha] \le \beta$. Specifically, $\beta = 0.05$, i.e., 95% confidence interval. \times **Empirical Utility Metric:** The upper bound of a $(1-\beta)$ confidence interval for the absolute query error.

Conclusion

We prove that BDP is a suitable solution for privacy-preserving data analysis when correlations are structured, e.g., small groups, weak Gaussian correlations, or time-series data.

Bin Yang, Issei Sato, and Hiroshi Nakagawa. "Bayesian Differential Privacy on Correlated Data". In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. 2015. DOI: 10.1145/2723372.2747643. Darshan Chakrabarti et al. Optimal Local Bayesian Differential Privacy over Markov Chains. 2022. arXiv: 2206.11402.