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Motivation
Dependencies among data records are
present in most of real world scenarios.
Bayesian DP extends DP to account for the
effect of correlations in privacy leakage.
Current BDP mechanisms suffer from poor
utility and lack applicability.

Without further assumptions
Privacy decreases linearly proportional to
number of correlated records:

𝜀-DP ⇒ m𝜀-BDP

This result is tight! Even if 𝜌 → 0.

Impossibility Result: We cannot
protect against arbitrary correlations
and provide utility at the same time.

For the same confidence level, the upper
bound on the query error 𝛼 increases sharply:

⇒We need to focus on specific distributions. In this
paper we analyze Gaussian and Markov models.

Multivariate Gaussian Correlation Markov Model

Main result
Let ℳ be an 𝜀ℓ1-private mechanism,
input data drawn from a multivariate Gaussian distribution
𝜌(m – 2) < 1 is the maximum correlation coefficient.

Then, ℳ is Bayesian d-private with

d(x , x ′) ≤
(︃

m2

4(1
𝜌

– m + 2)
+ 1

)︃
𝜀|x ′ – x |.

Main result
Let ℳ be an 𝜀-DP mechanism,
input data sampled form Markov chain with transition matrix P ∈ Rs×s

and initial distribution w ∈ Rs with the following properties:

(H1) For all x , y ∈ 𝒮 we have Px ,y > 0 and, (H2) wP = w .

Then, ℳ is an (𝜀 + 4 ln 𝛾)-BDP mechanism where 𝛾 = maxx ,y∈𝒮 Pxy
minx ,y∈𝒮 Pxy

.

We extend metric privacy to Bayesian metric privacy.
Using clipping as preprocessing step, cI(D)i = max(a, min(b, Di)),
we recover BDP:(︃

m2

4(1
𝜌

– m + 2)
+ 1

)︃
M𝜀-BDP.

where M is the diameter of the interval I = [a, b].

Previous mechanism Ours

Pxy > 0 Pxy > 0
stationary stationary

lazy
binary

symmetric
𝜀′ > 0 𝜀′ > 4 ln(𝛾)

Impact on Utility for Real Databases

From our theorems: Noise
recalibration of the Laplace
mechanism ⇒ BDP.
Substantial utility gains
compared to the standard
bound.
Markov bound independent of
n ⇒ huge improvement for
large datasets.

Galton, n = 897, m = 3.
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Electricity, n = m = 731.
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Activity, n = m = 17 568.
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– Theoretical Utility Metric: (𝛼,𝛽)-accuracy, i.e., Pr[|q(D) – ℳ(q(D))| ≥ 𝛼] ≤ 𝛽. Specifically, 𝛽 = 0.05, i.e., 95% confidence interval.
× Empirical Utility Metric: The upper bound of a (1 – 𝛽) confidence interval for the absolute query error.

Conclusion
We prove that BDP is a suitable solution for privacy-preserving data analysis when correlations are structured, e.g., small groups, weak Gaussian

correlations, or time-series data.
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