

Composability Properties of Differential Privacy for General Granularity Notions

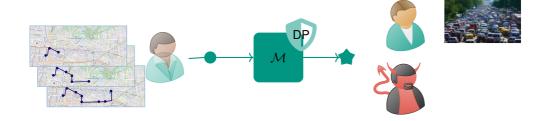
37th IEEE Computer Security Foundations Symposium

Patricia Guerra-Balboa, Àlex Miranda-Pascual, Javier Parra-Arnau, Thorsten Strufe | 12th July 2024

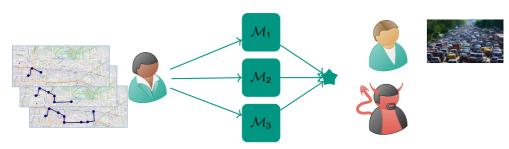
Differential Privacy



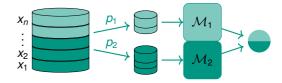
Differential Privacy

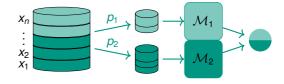


Differential Privacy



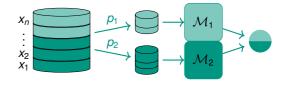
- Composition: We apply more than one mechanism to the database
 - To discretize a **complex** problem
 - To manage **continuous data releases**, for instance in **streaming**.





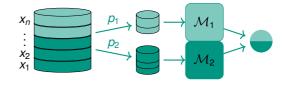
Sequential Composition Theorem

 Use-cases: streaming data, multiple query answering



Sequential Composition Theorem

- Use-cases: streaming data, multiple query answering
- $\mathbf{x}_i \in \mathcal{X}$



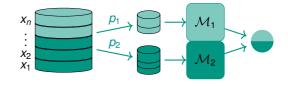
Sequential Composition Theorem

- Use-cases: streaming data, multiple query answering
- $\mathbf{x}_i \in \mathcal{X}$

12.7.2024

3/12

- $lackbox{}{}$ \mathcal{M}_i is unbounded DP in $\mathbb{D}_{\mathcal{X}}$
- $\blacksquare \mathcal{M} = (\mathcal{M}_1(D), \ldots, \mathcal{M}_k(D))$

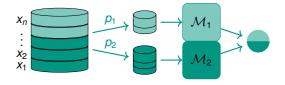


Sequential Composition Theorem

- Use-cases: streaming data, multiple query answering
- $\mathbf{x}_i \in \mathcal{X}$
- \mathcal{M}_i is unbounded DP in $\mathbb{D}_{\mathcal{X}}$
- $\bullet \mathcal{M} = (\mathcal{M}_1(D), \ldots, \mathcal{M}_k(D))$
- $\varepsilon = \sum_{i \in [k]} \varepsilon_i$

Sequential Composition Theorem

- Use-cases: streaming data, multiple query answering
- $\mathbf{x}_i \in \mathcal{X}$
- \mathcal{M}_i is unbounded DP in $\mathbb{D}_{\mathcal{X}}$
- $\bullet \mathcal{M} = (\mathcal{M}_1(D), \ldots, \mathcal{M}_k(D))$
- $\varepsilon = \sum_{i \in [k]} \varepsilon_i$

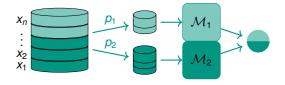


Parallel Composition Theorem

Use-cases: federated learning, Mini-Batch training

Sequential Composition Theorem

- Use-cases: streaming data, multiple query answering
- $\mathbf{x}_i \in \mathcal{X}$
- \mathcal{M}_i is unbounded DP in $\mathbb{D}_{\mathcal{X}}$
- $\bullet \mathcal{M} = (\mathcal{M}_1(D), \ldots, \mathcal{M}_k(D))$
- $\varepsilon = \sum_{i \in [k]} \varepsilon_i$

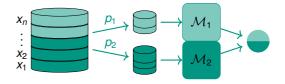


Parallel Composition Theorem

- Use-cases: federated learning, Mini-Batch training
- $x_i \in \mathcal{X}$ and $\{p_i\}$ partition of \mathcal{X}

Sequential Composition Theorem

- Use-cases: streaming data, multiple query answering
- $\mathbf{x}_i \in \mathcal{X}$
- \mathcal{M}_i is unbounded DP in $\mathbb{D}_{\mathcal{X}}$
- $\bullet \mathcal{M} = (\mathcal{M}_1(D), \ldots, \mathcal{M}_k(D))$
- $\varepsilon = \sum_{i \in [k]} \varepsilon_i$

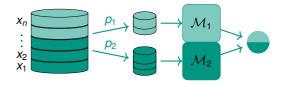


Parallel Composition Theorem

- Use-cases: federated learning, Mini-Batch training
- $x_i \in \mathcal{X}$ and $\{p_i\}$ partition of \mathcal{X}
- lacksquare \mathcal{M}_i unbounded DP in $\mathbb{D}_{\mathcal{X}_i}$
- $\bullet \mathcal{M} = (\mathcal{M}_1(p_1(D)), \ldots, \mathcal{M}_k(p_k(D)))$

Sequential Composition Theorem

- Use-cases: streaming data, multiple query answering
- $\mathbf{x}_i \in \mathcal{X}$
- \mathcal{M}_i is unbounded DP in $\mathbb{D}_{\mathcal{X}}$
- $\bullet \mathcal{M} = (\mathcal{M}_1(D), \ldots, \mathcal{M}_k(D))$
- $\varepsilon = \sum_{i \in [k]} \varepsilon_i$



Parallel Composition Theorem

- Use-cases: federated learning, Mini-Batch training
- $x_i \in \mathcal{X}$ and $\{p_i\}$ partition of \mathcal{X}
- lacksquare \mathcal{M}_i unbounded DP in $\mathbb{D}_{\mathcal{X}_i}$
- $\bullet \mathcal{M} = (\mathcal{M}_1(p_1(D)), \ldots, \mathcal{M}_k(p_k(D)))$
- $\varepsilon = \max_{i \in [k]} \varepsilon_i$

Q1: Composition in general data domains and granularities

New data domains

Other privacy requirements

Q1: Composition in general data domains and granularities

New data domains

Other privacy requirements

✓ New privacy requirements are modeled through the neighborhood definition, also called granularity

Q1: Composition in general data domains and granularities

New data domains

Other privacy requirements

- ✓ New privacy requirements are modeled through the neighborhood definition, also called granularity
- $\Pr(\mathcal{M}(D) \in S) \leq e^{\varepsilon} \Pr(\mathcal{M}(D') \in S) \forall D \sim_{\mathcal{G}} D'$

Q1: Composition in general data domains and granularities

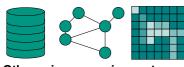
New data domains

Other privacy requirements

- ✓ New privacy requirements are modeled through the neighborhood definition, also called granularity
 - $Pr(\mathcal{M}(D) \in \mathcal{S}) \leq e^{\varepsilon} Pr(\mathcal{M}(D') \in \mathcal{S}) \ \forall D \sim_{\mathcal{G}} D'$
 - ? Do composition theorems work with other granularities?

Q1: Composition in general data domains and granularities

New data domains



Other privacy requirements

- New privacy requirements are modeled through the neighborhood definition, also called granularity
- $Pr(\mathcal{M}(D) \in S) \leq e^{\varepsilon} Pr(\mathcal{M}(D') \in S) \ \forall D \sim_{\mathcal{G}} D'$
- ? Do composition theorems work with other granularities?
- X NO → Parallel does not hold for bounded DP
 - **X** In extreme cases leading to $\varepsilon = \infty$ privacy leakage

How can we compute the privacy leakage in general granularities?

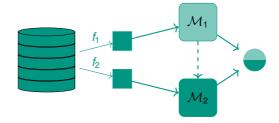
Q2: What happen when we use other composition strategies?

Parallel

Sequential

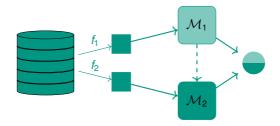
Q2: What happen when we use other composition strategies?

Sequential **Parallel**



Q2: What happen when we use other composition strategies?

Parallel Sequential



Can we compute tighter bounds on the privacy leakage for arbitrary functions f?

Generalizing Differential Privacy by Chatzikokolakis at al.

 \blacksquare Group Privacy: Given any granularity \mathcal{G}

Generalizing Differential Privacy by Chatzikokolakis at al.

 \blacksquare Group Privacy: Given any granularity \mathcal{G}

Generalizing Differential Privacy by Chatzikokolakis at al.

• Group Privacy: Given any granularity \mathcal{G}

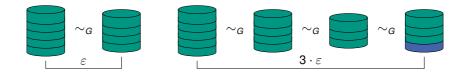
d-privacy

 $\mathcal{M} \colon \mathbb{D} \to \mathsf{Range}(\mathcal{M})$ is *d*-private if for all $S \subseteq \mathsf{Range}(\mathcal{M})$

$$\mathsf{P}(\mathcal{M}(\mathit{D}) \in \mathcal{S}) \leq \mathrm{e}^{\mathit{d}_{\mathbb{D}}(\mathit{D}, \mathit{D}')} \, \mathsf{P}(\mathcal{M}(\mathit{D}') \in \mathcal{S}).$$

Generalizing Differential Privacy by Chatzikokolakis at al.

• Group Privacy: Given any granularity \mathcal{G}



d-privacy

 $\mathcal{M} \colon \mathbb{D} \to \mathsf{Range}(\mathcal{M})$ is *d*-private if for all $S \subseteq \mathsf{Range}(\mathcal{M})$

$$\mathsf{P}(\mathcal{M}(\mathit{D}) \in \mathit{S}) \leq \mathrm{e}^{\mathit{d}_{\mathbb{D}}(\mathit{D},\mathit{D}')} \, \mathsf{P}(\mathcal{M}(\mathit{D}') \in \mathit{S}).$$

D arbitrary data domain

Generalizing Differential Privacy by Chatzikokolakis at al.

• Group Privacy: Given any granularity \mathcal{G}

d-privacy

 $\mathcal{M} \colon \mathbb{D} \to \mathsf{Range}(\mathcal{M})$ is d-private if for all $S \subseteq \mathsf{Range}(\mathcal{M})$

$$\mathsf{P}(\mathcal{M}(D) \in \mathcal{S}) \leq \mathrm{e}^{d_{\mathbb{D}}(D,D')} \, \mathsf{P}(\mathcal{M}(D') \in \mathcal{S}).$$

- D arbitrary data domain
- d sets the level of indistinguishability between two databases

Generalizing Differential Privacy by Chatzikokolakis at al.

• Group Privacy: Given any granularity \mathcal{G}

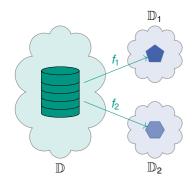
d-privacy

 $\mathcal{M} \colon \mathbb{D} \to \mathsf{Range}(\mathcal{M})$ is d-private if for all $S \subseteq \mathsf{Range}(\mathcal{M})$

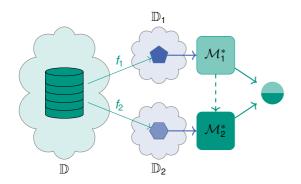
$$\mathsf{P}(\mathcal{M}(D) \in S) \leq \mathrm{e}^{d_{\mathbb{D}}(D,D')} \, \mathsf{P}(\mathcal{M}(D') \in S).$$

- D arbitrary data domain
- d sets the level of indistinguishability between two databases
- DP ↔ d-privacy

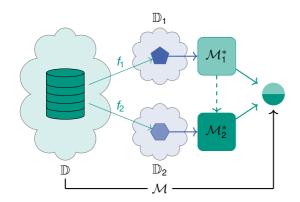
D be a database class



- D be a database class
- $f_i : \mathbb{D} \to \mathbb{D}_i$ be a deterministic map



- D be a database class
- $f_i : \mathbb{D} \to \mathbb{D}_i$ be a deterministic map
- $\mathcal{M}_i^* : \mathbb{D}_i \to \mathcal{R}_i$ be d_i -private

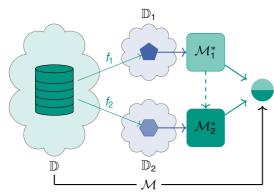


General Composition Theorem

- D be a database class
- $f_i : \mathbb{D} \to \mathbb{D}_i$ be a deterministic map
- lacksquare $\mathcal{M}_i^*: \mathbb{D}_i o \mathcal{R}_i$ be d_i -private

Then $\mathcal{M} = (\mathcal{M}_1^* \circ f_1, \dots, \mathcal{M}_k^* \circ f_k)$ is $d_{\mathbb{D}}$ -private with

$$d_{\mathbb{D}}(D,D')=\sum_{i=1}^k d_i(f_i(D),f_i(D')).$$



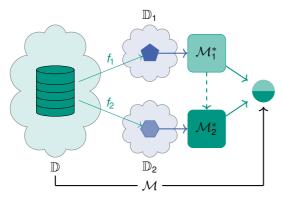
• If $d(f_i(D), f_i(D')) = \infty \Rightarrow \text{No privacy}$

General Composition Theorem

- D be a database class
- $f_i : \mathbb{D} \to \mathbb{D}_i$ be a deterministic map
- lacksquare $\mathcal{M}_i^*: \mathbb{D}_i o \mathcal{R}_i$ be d_i -private

Then $\mathcal{M} = (\mathcal{M}_1^* \circ f_1, \dots, \mathcal{M}_k^* \circ f_k)$ is $d_{\mathbb{D}}$ -private with

$$d_{\mathbb{D}}(D,D')=\sum_{i=1}^k d_i(f_i(D),f_i(D')).$$



General Composition Theorem

- D be a database class
- \bullet $f_i : \mathbb{D} \to \mathbb{D}_i$ be a deterministic map
- lacksquare $\mathcal{M}_i^* \colon \mathbb{D}_i \to \mathcal{R}_i$ be d_i -private

Then $\mathcal{M} = (\mathcal{M}_1^* \circ f_1, \dots, \mathcal{M}_k^* \circ f_k)$ is $d_{\mathbb{D}}$ -private with

$$d_{\mathbb{D}}(D,D')=\sum_{i=1}^k d_i(f_i(D),f_i(D')).$$

- If $d(f_i(D), f_i(D')) = \infty \Rightarrow \text{No privacy}$
- If $f_i(D) = f_i(D') \Rightarrow \text{Tighter bound} \longrightarrow \sum_{i \in f_i(D) \neq f_i(D')} r_i \varepsilon_i$

$$d_i(D,D') = arepsilon_i | (D \cup D)' \setminus (D \cap D') | \& \ p ext{ partition} \ & \ arepsilon = \max_i arepsilon_i$$

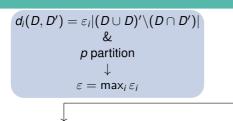
$$d_i(D,D') = arepsilon_i | (D \cup D)' \setminus (D \cap D') | \& \ p ext{ partition} \ \downarrow \ arepsilon = \max_i arepsilon_i$$

For all
$$d_i(D, D')$$

&
$$f = id$$

$$d = \sum_i d_i$$

General Composition Theorem



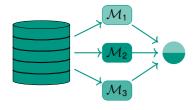
For all $d_i(D, D')$ f = id $d = \sum_i d_i$

We derive the conditions needed to obtain $\max_{i} \varepsilon_{i}$

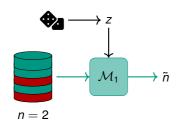
We give examples of intermediate bounds between sequential and parallel

We derive a privacy amplification respect to sequential composition in the "common-domain setting"

• Generalized Sequential: $d = \sum d_i (\sum \varepsilon_i)$

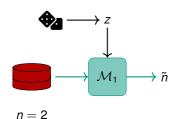


9/12



- Generalized Sequential: $d = \sum d_i (\sum \varepsilon_i)$
- $\mathcal{M}(D) = |\frac{D_{\leq 18}}{|D|} + Z \text{ with } Z \sim Lap(\frac{\Delta}{\epsilon})$

9/12



- Generalized Sequential: $d = \sum d_i (\sum \varepsilon_i)$
- $\mathcal{M}(D) = |D_{\leq 18}| + Z \text{ with } Z \sim Lap(\frac{\Delta}{\varepsilon})$
- $Pr(\mathcal{M}(D) \in S) = Pr(\mathcal{M}(\frac{D}{<18}) \in S)$

- Generalized Sequential: $d = \sum d_i (\sum \varepsilon_i)$
- $lackbox{} \mathcal{M}(\mathit{D}) = | rac{\mathit{D}_{\leq 18}}{} | + \mathit{Z} \text{ with } \mathit{Z} \sim \mathit{Lap}(rac{\Delta}{arepsilon})$
- $Pr(\mathcal{M}(D) \in S) = Pr(\mathcal{M}(D_{\leq 18}) \in S)$
- We say that \mathcal{M} is f-dependent if there exists \mathcal{M}^* with domain $f(\mathbb{D})$ such that

$$\mathcal{M} = \mathcal{M}^* \circ f$$
.

Tighter composition bound under f-dependency

Theorem

D be a database class

Tighter composition bound under f-dependency

Theorem

- D be a database class
- $f_i : \mathbb{D} \to \mathbb{D}_i$ be a deterministic map

- D be a database class
- $f_i \colon \mathbb{D} \to \mathbb{D}_i$ be a deterministic map
- $\mathcal{M} \colon \mathbb{D} \to \mathcal{R}_i$ be d_i -private and f_i -dependent

- D be a database class
- $f_i : \mathbb{D} \to \mathbb{D}_i$ be a deterministic map
- $\mathcal{M} \colon \mathbb{D} \to \mathcal{R}_i$ be d_i -private and f_i -dependent

Then $\mathcal{M}=(\mathcal{M}_1,\ldots,\mathcal{M}_k)$ is $\emph{d}_{\mathbb{D}}$ -private with

$$d_{\mathbb{D}} = \sum_{i=1}^{k} d_{i}^{f_{i}} \leq \sum_{i=1}^{k} d_{i}$$

- D be a database class
- $f_i : \mathbb{D} \to \mathbb{D}_i$ be a deterministic map
- $\mathcal{M} \colon \mathbb{D} \to \mathcal{R}_i$ be d_i -private and f_i -dependent

Then $\mathcal{M}=(\mathcal{M}_1,\ldots,\mathcal{M}_k)$ is $\emph{d}_{\mathbb{D}}\text{-private}$ with

$$d_{\mathbb{D}} = \sum_{i=1}^{k} d_i^{f_i} \leq \sum_{i=1}^{k} d_i$$

$$d_i^{f_i}(D,D') = \min_{\substack{ ilde{D}, ilde{D}' \in \mathbb{D} \\ f_i(ilde{D}) = f_i(D) \\ f_i(ilde{D}') = f_i(D')}} d_i(ilde{D}, ilde{D}').$$

- D be a database class
- $f_i : \mathbb{D} \to \mathbb{D}_i$ be a deterministic map
- $\mathcal{M} \colon \mathbb{D} \to \mathcal{R}_i$ be d_i -private and f_i -dependent

Then $\mathcal{M}=(\mathcal{M}_1,\ldots,\mathcal{M}_k)$ is $\emph{d}_{\mathbb{D}}$ -private with

$$d_{\mathbb{D}} = \sum_{i=1}^{k} d_i^{f_i} \leq \sum_{i=1}^{k} d_i$$

$$d_i^{f_i}(D,D') = \min_{\substack{ ilde{D}, ilde{D}' \in \mathbb{D} \ f_i(ilde{D}) = f_i(D) \ f_i(ilde{D}') = f_i(D')}} d_i(ilde{D}, ilde{D}').$$

Tighter composition bound under f-dependency

Theorem

- D be a database class
- $f_i : \mathbb{D} \to \mathbb{D}_i$ be a deterministic map
- $\mathcal{M} \colon \mathbb{D} \to \mathcal{R}_i$ be d_i -private and f_i -dependent

Then $\mathcal{M}=\left(\mathcal{M}_1,\ldots,\mathcal{M}_k\right)$ is $\emph{d}_{\mathbb{D}}\text{-private}$ with

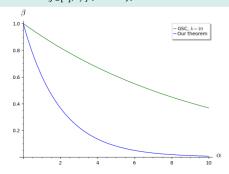
$$d_{\mathbb{D}} = \sum_{i=1}^{k} d_i^{f_i} \leq \sum_{i=1}^{k} d_i$$

$$d_i^{f_i}(D,D') = \min_{\substack{ ilde{D}, ilde{D}'\in\mathbb{D}\ f_i(ilde{D})=f_i(D')\ f_i(ilde{D}')=f_i(D')}} d_i(ilde{D}, ilde{D}').$$

$$d^f(D,D^\prime)=0$$

Corollary

Let p be a k-partitioning function. For all $i \in [k]$, let $\mathcal{M}_i \colon \mathbb{D} \to \mathcal{R}_i$ be mechanisms satisfying bounded ε_i -DP and p_i -dependent. Then mechanism $\mathcal{M} = (\mathcal{M}_1, \dots, \mathcal{M}_k)$ with domain \mathbb{D} is bounded ε -DP with $\varepsilon = \max_{i,i \in [k]: i \neq i} (\varepsilon_i + \varepsilon_i)$.



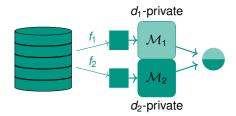
✓ Thanks to our theorem we have an improved bound

$$\varepsilon = \max_{i,j \in [k]; i \neq j} (\varepsilon_i + \varepsilon_j) < \sum_{i=1}^k \varepsilon_i$$

11/12

✓ Composability is inherent to DP

- Composability is inherent to DP
- We provide a tighter privacy leakage estimation under
 - any composition strategy & pre-processing functions
 - ✓ under mixed privacy requirements



- Composability is inherent to DP
- We provide a tighter privacy leakage estimation under
 - any composition strategy & pre-processing functions
 - ✓ under mixed privacy requirements
- We provide tighter privacy bounds under mechanisms dependencies. Solving the problem of bounded parallel.

- Composability is inherent to DP
- We provide a tighter privacy leakage estimation under
 - any composition strategy & pre-processing functions
 - ✓ under mixed privacy requirements
- We provide tighter privacy bounds under mechanisms dependencies. Solving the problem of bounded parallel.
- All theorems have been extended to approximate, zero-concentrated and Gaussian DP.

- Composability is inherent to DP
- We provide a tighter privacy leakage estimation under
 - ✓ any composition strategy & pre-processing functions
 - ✓ under mixed privacy requirements
- ✓ We provide tighter privacy bounds under mechanisms dependencies. Solving the problem of bounded parallel.
- All theorems have been extended to approximate, zero-concentrated and Gaussian DP.

Thanks for your attention!

Figure: For more details check our paper