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Composition: We apply more than one mechanism to the database
To discretize a complex problem
To manage continuous data releases, for instance in streaming.
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Sequential Composition Theorem

Use-cases: streaming data, multiple query
answering

xi ∈ X
Mi is unbounded DP in DX

M = (M1(D), . . . ,Mk(D))

ε =
∑

i∈[k] εi

Parallel Composition Theorem

Use-cases: federated learning, Mini-Batch
training

xi ∈ X and {pi} partition of X
Mi unbounded DP in DXi

M = (M1(p1(D)), . . . ,Mk(pk(D)))

ε = maxi∈[k] εi
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New data domains

Other privacy requirements

✓ New privacy requirements are modeled through
the neighborhood definition, also called
granularity

Pr(M(D) ∈ S) ≤ eε Pr(M(D′) ∈ S) ∀D ∼G D′

? Do composition theorems work with other
granularities?

p NO → Parallel does not hold for bounded DP
p In extreme cases leading to ε = ∞ privacy

leakage

How can we compute the privacy leakage in general granularities?
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Q1: Composition in general data domains and granularities



New data domains

Other privacy requirements

✓ New privacy requirements are modeled through
the neighborhood definition, also called
granularity

Pr(M(D) ∈ S) ≤ eε Pr(M(D′) ∈ S) ∀D ∼G D′

? Do composition theorems work with other
granularities?

p NO → Parallel does not hold for bounded DP
p In extreme cases leading to ε = ∞ privacy

leakage

How can we compute the privacy leakage in general granularities?

4/12 12. 7. 2024 Guerra-Balboa et al.: Composability Properties of DP for General Granularity Notions KASTEL-Privacy and Security

Problem Statement
Q1: Composition in general data domains and granularities



New data domains

Other privacy requirements

✓ New privacy requirements are modeled through
the neighborhood definition, also called
granularity

Pr(M(D) ∈ S) ≤ eε Pr(M(D′) ∈ S) ∀D ∼G D′

? Do composition theorems work with other
granularities?

p NO → Parallel does not hold for bounded DP
p In extreme cases leading to ε = ∞ privacy

leakage

How can we compute the privacy leakage in general granularities?

4/12 12. 7. 2024 Guerra-Balboa et al.: Composability Properties of DP for General Granularity Notions KASTEL-Privacy and Security

Problem Statement
Q1: Composition in general data domains and granularities



New data domains

Other privacy requirements

✓ New privacy requirements are modeled through
the neighborhood definition, also called
granularity

Pr(M(D) ∈ S) ≤ eε Pr(M(D′) ∈ S) ∀D ∼G D′

? Do composition theorems work with other
granularities?

p NO → Parallel does not hold for bounded DP
p In extreme cases leading to ε = ∞ privacy

leakage

How can we compute the privacy leakage in general granularities?

4/12 12. 7. 2024 Guerra-Balboa et al.: Composability Properties of DP for General Granularity Notions KASTEL-Privacy and Security

Problem Statement
Q1: Composition in general data domains and granularities



New data domains

Other privacy requirements

✓ New privacy requirements are modeled through
the neighborhood definition, also called
granularity

Pr(M(D) ∈ S) ≤ eε Pr(M(D′) ∈ S) ∀D ∼G D′

? Do composition theorems work with other
granularities?

p NO → Parallel does not hold for bounded DP
p In extreme cases leading to ε = ∞ privacy

leakage

How can we compute the privacy leakage in general granularities?

4/12 12. 7. 2024 Guerra-Balboa et al.: Composability Properties of DP for General Granularity Notions KASTEL-Privacy and Security

Problem Statement
Q1: Composition in general data domains and granularities



Parallel Sequential

M1

M2

f1

f2

Can we compute tighter bounds on the privacy leakage for arbitrary functions f?
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Q2: What happen when we use other composition strategies?
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Group Privacy: Given any granularity G

∼G

ε

d-privacy
M : D → Range(M) is d-private if for all
S ⊆ Range(M)

P(M(D) ∈ S) ≤ edD(D,D′) P(M(D′) ∈ S).

D arbitrary data domain

d sets the level of indistinguishability between two
databases

DP ↔ d-privacy
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f2

M∗
1

M∗
2

M

General Composition Theorem
D be a database class

fi : D → Di be a deterministic map

M∗
i : Di → Ri be di -private

Then M = (M∗
1 ◦ f1, . . . ,M∗

k ◦ fk) is
dD-private with

dD(D,D′) =
k∑

i=1

di(fi(D), fi(D′)).

If d(fi(D), fi(D′)) = ∞ ⇒ No privacy

If fi(D) = fi(D′) ⇒ Tighter bound −→
∑

i : fi (D)̸=fi (D′) riεi

7/12 12. 7. 2024 Guerra-Balboa et al.: Composability Properties of DP for General Granularity Notions KASTEL-Privacy and Security

General composition theorem



D

D1

D2

f1

f2

M∗
1

M∗
2

M

General Composition Theorem
D be a database class

fi : D → Di be a deterministic map

M∗
i : Di → Ri be di -private

Then M = (M∗
1 ◦ f1, . . . ,M∗

k ◦ fk) is
dD-private with

dD(D,D′) =
k∑

i=1

di(fi(D), fi(D′)).

If d(fi(D), fi(D′)) = ∞ ⇒ No privacy

If fi(D) = fi(D′) ⇒ Tighter bound −→
∑

i : fi (D)̸=fi (D′) riεi

7/12 12. 7. 2024 Guerra-Balboa et al.: Composability Properties of DP for General Granularity Notions KASTEL-Privacy and Security

General composition theorem



D

D1

D2

f1

f2

M∗
1

M∗
2

M

General Composition Theorem
D be a database class

fi : D → Di be a deterministic map

M∗
i : Di → Ri be di -private

Then M = (M∗
1 ◦ f1, . . . ,M∗

k ◦ fk) is
dD-private with

dD(D,D′) =
k∑

i=1

di(fi(D), fi(D′)).

If d(fi(D), fi(D′)) = ∞ ⇒ No privacy

If fi(D) = fi(D′) ⇒ Tighter bound −→
∑

i : fi (D)̸=fi (D′) riεi

7/12 12. 7. 2024 Guerra-Balboa et al.: Composability Properties of DP for General Granularity Notions KASTEL-Privacy and Security

General composition theorem



D

D1

D2

f1

f2

M∗
1

M∗
2

M

General Composition Theorem
D be a database class

fi : D → Di be a deterministic map

M∗
i : Di → Ri be di -private

Then M = (M∗
1 ◦ f1, . . . ,M∗

k ◦ fk) is
dD-private with

dD(D,D′) =
k∑

i=1

di(fi(D), fi(D′)).

If d(fi(D), fi(D′)) = ∞ ⇒ No privacy

If fi(D) = fi(D′) ⇒ Tighter bound −→
∑

i : fi (D)̸=fi (D′) riεi

7/12 12. 7. 2024 Guerra-Balboa et al.: Composability Properties of DP for General Granularity Notions KASTEL-Privacy and Security

General composition theorem



D

D1

D2

f1

f2

M∗
1

M∗
2

M

General Composition Theorem
D be a database class

fi : D → Di be a deterministic map

M∗
i : Di → Ri be di -private

Then M = (M∗
1 ◦ f1, . . . ,M∗

k ◦ fk) is
dD-private with

dD(D,D′) =
k∑

i=1

di(fi(D), fi(D′)).

If d(fi(D), fi(D′)) = ∞ ⇒ No privacy

If fi(D) = fi(D′) ⇒ Tighter bound −→
∑

i : fi (D)̸=fi (D′) riεi

7/12 12. 7. 2024 Guerra-Balboa et al.: Composability Properties of DP for General Granularity Notions KASTEL-Privacy and Security

General composition theorem



D

D1

D2

f1

f2

M∗
1

M∗
2

M

General Composition Theorem
D be a database class

fi : D → Di be a deterministic map

M∗
i : Di → Ri be di -private

Then M = (M∗
1 ◦ f1, . . . ,M∗

k ◦ fk) is
dD-private with

dD(D,D′) =
k∑

i=1

di(fi(D), fi(D′)).

If d(fi(D), fi(D′)) = ∞ ⇒ No privacy

If fi(D) = fi(D′) ⇒ Tighter bound −→
∑

i : fi (D)̸=fi (D′) riεi

7/12 12. 7. 2024 Guerra-Balboa et al.: Composability Properties of DP for General Granularity Notions KASTEL-Privacy and Security

General composition theorem



General Composition Theorem

di(D,D′) = εi |(D ∪ D)′\(D ∩ D′)|
&

p partition
↓

ε = maxi εi

For all di(D,D′)
&

f = id
↓

d =
∑

i di

We give examples
of intermediate bounds between

sequential and parallel

We derive the conditions
needed to obtain

maxi εi

We derive a privacy amplification
respect to sequential composition
in the “common-domain setting”
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M1

M2

M3

Generalized Sequential: d =
∑

di (
∑

εi)

M(D) = |D≤18|+ Z with Z ∼ Lap(∆ε )

Pr(M(D) ∈ S) = Pr(M(D≤18) ∈ S)

We say that M is f -dependent if there exists M∗

with domain f (D) such that

M = M∗ ◦ f .
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Theorem
D be a database class

fi : D → Di be a deterministic map

M : D → Ri be di -private and
fi -dependent

Then M = (M1, . . . ,Mk) is dD-private
with

dD =
k∑

i=1

d fi
i ≤

k∑
i=1

di

d fi
i (D,D′) = min

D̃,D̃′∈D
fi (D̃)=fi (D)

fi (D̃
′)=fi (D

′)

di(D̃, D̃′).
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d f (D,D′) = 0
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Corollary
Let p be a k -partitioning function. For all i ∈ [k ], let Mi : D → Ri be mechanisms satisfying bounded εi -DP
and pi -dependent. Then mechanism M = (M1, . . . ,Mk) with domain D is bounded ε-DP with
ε = maxi,j∈[k]; i ̸=j(εi + εj).

✓ Thanks to our theorem we have an
improved bound

ε = max
i,j∈[k]; i ̸=j

(εi + εj) <
k∑

i=1

εi
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✓ Composability is inherent to DP
✓ We provide a tighter privacy leakage estimation

under
✓ any composition strategy & pre-processing

functions
✓ under mixed privacy requirements

✓ We provide tighter privacy bounds under
mechanisms dependencies. Solving the problem
of bounded parallel.

✓ All theorems have been extended to approximate,
zero-concentrated and Gaussian DP.
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Thanks for your attention!

Figure: For more details check our paper
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