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Motivation
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Figure: Humphries et al. 2023 MIA attack
breaks DP guarantees.
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Motivation

Dependencies among data records
are present in most of real world

scenarios.
Differential Privacy fails to measure privacy leakage under /w\ \
correlation Q ~
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We share DNA!
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Motivation

Dependencies among data records
are present in most of real world

scenarios.
Differential Privacy fails to measure privacy leakage under -~
correlation “ ™
B #° Theoretically exposed </> & Empirically confirmed Q/ ~ /

New enhanced notion: Bayesian Differential

Privacy
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Bayesian Differential Privacy (BDP)

Bayesian DP leakage

PrulY € S| Xk = Xk, Xi = Xj]
BDPL k= sup In ’ , then ¢ = supBDPLx j).
(K,i) Xi X! X, S PrulY € S| Xk = Xk, Xi = X]] o (K, i)
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K={1,3},i=2
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Bayesian Differential Privacy (BDP)

Bayesian DP leakage

BDPL(ky= sup In

PrM[Y cS ’ XK = XK,)(,' = X,']

then € = sup BDPL k.

X,',XI{,XK,S PrM[Y S S ‘ XK — XK7)(I — X[/]’ K,i

Privacy

v/ Effective measure and resistance to
correlation-based attacks.

v Instance of Pufferfish framework.

v/ Good properties: post-processing &
composition.

3/15 Balancing Privacy and Utility in Correlated Data

Utility

X Computationally intractable methods
(computing the Wasserstein distance).

X Poor utility (methods based on group privacy).

X Limited applicability (lazy, binary, stationary
Markov chains).
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Our Research Question

Can we reduce utility loss while still retaining the
privacy guarantees of BDP?

Our methodology: Understanding how DP leakage
relates to BDP leakage:

e-DP = ?7-BDP.
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Against arbitrary correlations it is impossible

Kifer and Machanavajjhala 2014:

Pufferfish (including BDP)
A —>  Free-lunch Privacy = No utility.
arbitrary correlation

1

We express this in term of (a, 3)-accuracy: 0 < 3 < &

and any target query f, then a > I maxp o |f(D) — f(D')|.

1 — g = Confidence
« = Error, interval radius with

confidence 1 — £.

T
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Against arbitrary correlations it is impossible

Kifer and Machanavajjhala 2014:

Pufferfish (including BDP)
A —>  Free-lunch Privacy = No utility.
arbitrary correlation

We express this in term of («, f)-accuracy: 0 < g < eQH and any target query f, then a > I maxp o |f(D) — f(D')|.
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Few Correlated Records, Same Disaster

Our result (informal)

Privacy decreases linearly proportional to number
of correlated records:

e-DP = me-BDP

6/15 Balancing Privacy and Utility in Correlated Data

How does it impact utility?

Laplace mechanism
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Figure: For the same confidence level, the upper bound on the query
error « increases sharply.
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Few Correlated Records, Same Disaster

Our result (informal)

Privacy decreases linearly proportional to number
of correlated records:
e-DP = me-BDP

This result is tight! Even if p — 0.
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How does it impact utility?

Laplace mechanism
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Figure: For the same confidence level, the upper bound on the query
error « increases sharply.

KASTEL — Privacy and Security ﬂ(IT



Few Correlated Records, Same Disaster

= H agm 9
Our result (informal) How does it impact utility

Laplace mechanism

Privacy decreases linearly proportional to number 1001 e independence
of correlated records: . m=2
—— M =5

=10

e-DP = me-BDP
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a under BDP

This result is tight! Even if p — 0.
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Conclusion:

0 2 4 6 8 10
a under DP

We need to target specific correlation models 7 to
obtain utility error o increases sharply.

Figure: For the same confidence level, the upper bound on the query
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New strategy

Our goal

Adjust the noise of DP mechanisms to obtain useful BDP
mechanisms.

Assumption: The attacker does not have more knowledge about =
than the data curator.
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New strategy

Our goal

Adjust the noise of DP mechanisms to obtain useful BDP
mechanisms.

Assumption: The attacker does not have more knowledge about =
than the data curator.

Multivariate Gaussian Markov Chains

T



Multivariate Gaussian Correlation

Main Result (Informal)

m Let M be an e/;-private mechanism,
m input data drawn from a multivariate Gaussian distribution
m p(m— 2) < 1is the maximum correlation coefficient.
Then, using clipping as preprocessing step, ¢/(D); = max(a, min(b, D;)), we obtain M, satisfying

m2
BDPL < 1| Me.
M) < (4(1 m+2) ) g

;_

where M is the diameter of the interval | = [a, b]
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Multivariate Gaussian Correlation

Main Result (Informal)

m Let M be an e/;-private mechanism,
m input data drawn from a multivariate Gaussian distribution
m p(m— 2) < 1is the maximum correlation coefficient.
Then, using clipping as preprocessing step, ¢/(D); = max(a, min(b, D;)), we obtain M, satisfying

m2
BDPL < 1| Me.
(MI)<4(%—m+2)+ ) )

where M is the diameter of the interval | = [a, b]

m Mely = M;is Me-DP.
m Using clipping as preprocessing step is a common technique to bound the sensitivity of DP queries.
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Multivariate Gaussian Correlation

— Theoretical Utility Metric: («, 5)-accuracy, i.e., Pr[|q(D) — M(q(D))| > «] < . Specifically, 5 = 0.05, i.e., 95%

confidence interval.

x Empirical Utility Metric: The upper bound of a (1 — 3) confidence interval for the absolute query error.
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enough
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Figure: Galton, n =897 m=3
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m From our theorems: Noise recalibration of the
Laplace mechanism = BDP.

m Substantial utility gains compared to the standard
bound.

m More experiments with different real and synthetic
datasets in our paper show similar results.
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Markov Chain Correlation Model

Main result (Informal)

m Let M be an e-DP mechanism,

m input data sampled form Markov chain with transition matrix P € R5*¢ and initial distribution w € R* with
the following properties:

(H1) For all x, y € S we have P, , > 0 and, (H2) wP = w.

maxx7y€5 ny

Then, M is an (¢ + 4In~)-BDP mechanism where v = i yes Py
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Markov Chain Correlation Model

Main result (Informal)

m Let M be an e-DP mechanism,

m input data sampled form Markov chain with transition matrix P € R5*¢ and initial distribution w € R* with
the following properties:

(H1) For all x, y € S we have P, , > 0 and, (H2) wP = w.

maxx7y€3 ny

Then, M is an (e + 4 In~)-BDP mechanism where v =

minX7y€3 ny :
Previous mechanism  Ours @ vs. & (ixed = 0.05)
Py, >0 Py, >0
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Iazy s ® OursPs =07
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blnary ® OursPs=0.6
symmetric *
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Markov Chain Correlation Model

10° ] .
10°] « General Bound ) | From_our t_heorems. Noise
. Markov (80) 10 recalibration of the Laplace
10° i m::tgz gg; 10°4 x General Bound mechanism = BDP.
a a . ags .
Lot + DP Query 1074 »—Markov-Bound m Substantial utility gains
1 + DP Query
. 10%; compared to the standard bound.
1001 ]
109 m m Markov bound independent of n
107 107*

2 4 6 8 1012 14 16 18 20 2 4 6 8 1012 14 16 18 20 = huge improvement for large
€ € datasets.
(a) Electricity, n = 731. (b) Activity, n = 17 568.
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Conclusion

m We provide a close and computationally feasible method to
generate a BDP mechanism by recalibrating existing DP
methods.

12/15 Balancing Privacy and Utility in Correlated Data KASTEL — Privacy and Security ﬂ(IT



Conclusion

m We provide a close and computationally feasible method to
generate a BDP mechanism by recalibrating existing DP
methods.

m Our new bounds, tailored to Gaussian and Markov models,
offer significantly better utility than prior results.
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Conclusion

m We provide a close and computationally feasible method to
generate a BDP mechanism by recalibrating existing DP
methods.

m Our new bounds, tailored to Gaussian and Markov models,
offer significantly better utility than prior results.

Key takeaway:

BDP becomes practical and more accurate when correla-

tions are structured, e.g., small groups, weak Gaussian
correlations, or time-series data.

12/15 Balancing Privacy and Utility in Correlated Data KASTEL - Privacy and Security A\‘(IT



Conclusion

m We provide a close and computationally feasible method to
generate a BDP mechanism by recalibrating existing DP
methods.

m Our new bounds, tailored to Gaussian and Markov models,
offer significantly better utility than prior results.

Key takeaway:

BDP becomes practical and more accurate when correla-

tions are structured, e.g., small groups, weak Gaussian
correlations, or time-series data.

m This enables safe reuse of DP mechanisms in real-world,
correlated scenarios without weakening privacy guarantees.
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Backup Slides
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Experiment Details

Database n m | Parameters Sensitivity
Galton 897 |3 |p=0.275 Aq = 254cm
FamilylQ 868 |2 | p=0.4483 Ag =120
SyntheticlQ 20000 |2 | p=0.45 Aq =120
Activity 17568 | n | v =7.54 Ag =1
Activity Single Day | 288 n|~v=7.54 Ag =1

70 kWh, v = 3.29
Electricity 731 n | 80 kWh,v=4.49 | Aq =1

90 kWh, ~ = 8.43

Table: Data description. m is the max number of correlated records and n the total amount.
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Multivariate Gaussian More Results
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(c) Galton,n=897 m =3 (d) FamilylQ, n = 868, m = 2. (e) SyntheticlQ, n = 20000, m = 2.

Figure: Gaussian data results. Lines show theoretical error at 5 = 5% and markers indicate empirical 95% upper bounds.
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