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Differential Privacy fails to measure privacy leakage under
correlation

! ! Theoretically exposed " Empirically confirmed

Figure: Humphries et al. 2023 MIA attack
breaks DP guarantees.

New enhanced notion: Bayesian Differential
Privacy
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Dependencies among data records
are present in most of real world

scenarios.

We share DNA!
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Bayesian DP leakage

BDPL(K ,i) = sup
xi ,x

→
i
,xK ,S

ln
PrM[Y ↑ S | XK = xK ,Xi = xi ]

PrM[Y ↑ S | XK = xK ,Xi = x →
i
]
, then ω = sup

K ,i
BDPL(K ,i).

M"BDP
x2

x1

x3

O

K = {1, 3}, i = 2
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Bayesian DP leakage

BDPL(K ,i) = sup
xi ,x

→
i
,xK ,S

ln
PrM[Y ↑ S | XK = xK ,Xi = xi ]

PrM[Y ↑ S | XK = xK ,Xi = x →
i
]
, then ω = sup

K ,i
BDPL(K ,i).

Privacy Utility
# Effective measure and resistance to

correlation-based attacks.
# Instance of Pufferfish framework.
# Good properties: post-processing &

composition.

! Computationally intractable methods
(computing the Wasserstein distance).

! Poor utility (methods based on group privacy).
! Limited applicability (lazy, binary, stationary

Markov chains).
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Can we reduce utility loss while still retaining the
privacy guarantees of BDP?

Our methodology: Understanding how DP leakage
relates to BDP leakage:

ω-DP ↓ ??-BDP.

4/15 Balancing Privacy and Utility in Correlated Data KASTEL – Privacy and Security

Our Research Question



Kifer and Machanavajjhala 2014:

Pufferfish (including BDP)

↔
arbitrary correlation

↓ Free-lunch Privacy ↓ No utility.

We express this in term of (ε, ϑ)-accuracy: 0 ↗ ϑ < 1
eω+1 and any target query f , then ε > 1

2 maxD,D→ |f (D)↘ f (D→)|.

1 ↘ ϑ = Confidence
ε = Error, interval radius with

confidence 1 ↘ ϑ.

M"BDP
50

Out of 100
how many

are infected?

Is it 0 or
100?
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Our result (informal)

Privacy decreases linearly proportional to number
of correlated records:

ω-DP ↓ mω-BDP

This result is tight! Even if ϖ ≃ 0.

Conclusion:

We need to target specific correlation models ϱ to
obtain utility

How does it impact utility?

Figure: For the same confidence level, the upper bound on the query
error ε increases sharply.
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Our goal

Adjust the noise of DP mechanisms to obtain useful BDP
mechanisms.

Assumption: The attacker does not have more knowledge about ϱ
than the data curator.

Multivariate Gaussian Markov Chains
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Main Result (Informal)

Let M be an ως1-private mechanism,
input data drawn from a multivariate Gaussian distribution
ϖ(m ↘ 2) < 1 is the maximum correlation coefficient.

Then, using clipping as preprocessing step, cI(D)i = max(a,min(b,Di)), we obtain MI satisfying

BDPL(MI) ↗
(

m2

4(1
ϖ ↘ m + 2)

+ 1

)
Mω.

where M is the diameter of the interval I = [a, b]

M ως1 ↓ MI is Mω-DP.
Using clipping as preprocessing step is a common technique to bound the sensitivity of DP queries.
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↘ Theoretical Utility Metric: (ε, ϑ)-accuracy, i.e., Pr[|q(D)↘M(q(D))| ⇐ ε] ↗ ϑ. Specifically, ϑ = 0.05, i.e., 95%
confidence interval.
⇒ Empirical Utility Metric: The upper bound of a (1 ↘ ϑ) confidence interval for the absolute query error.
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Figure: Galton, n = 897 m = 3

From our theorems: Noise recalibration of the
Laplace mechanism ↓ BDP.
Substantial utility gains compared to the standard
bound.
More experiments with different real and synthetic
datasets in our paper show similar results.

9/15 Balancing Privacy and Utility in Correlated Data KASTEL – Privacy and Security

Multivariate Gaussian Correlation (Impact on Real Databases)

Not private 
enough



Main result (Informal)

Let M be an ω-DP mechanism,
input data sampled form Markov chain with transition matrix P ↑ Rs⇒s and initial distribution w ↑ Rs with
the following properties:

(H1) For all x , y ↑ S we have Px ,y > 0 and, (H2) wP = w .

Then, M is an (ω + 4 ln φ)-BDP mechanism where φ =
maxx ,y↑S Pxy

minx ,y↑S Pxy
.

Previous mechanism Ours

Pxy > 0 Pxy > 0
stationary stationary

lazy
binary

symmetric
ω→ > 0 ω→ > 4 ln(φ)
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(a) Electricity, n = 731.
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(b) Activity, n = 17 568.

From our theorems: Noise
recalibration of the Laplace
mechanism ↓ BDP.
Substantial utility gains
compared to the standard bound.
Markov bound independent of n

↓ huge improvement for large
datasets.
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We provide a close and computationally feasible method to
generate a BDP mechanism by recalibrating existing DP
methods.

Our new bounds, tailored to Gaussian and Markov models,
offer significantly better utility than prior results.

Key takeaway:

BDP becomes practical and more accurate when correla-
tions are structured, e.g., small groups, weak Gaussian
correlations, or time-series data.

This enables safe reuse of DP mechanisms in real-world,
correlated scenarios without weakening privacy guarantees.

Paper

Code
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Backup Slides
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Database n m Parameters Sensitivity
Galton 897 3 ϖ = 0.275 !q = 254cm

FamilyIQ 868 2 ϖ = 0.4483 !q = 120
SyntheticIQ 20000 2 ϖ = 0.45 !q = 120
Activity 17568 n φ = 7.54 !q = 1
Activity Single Day 288 n φ = 7.54 !q = 1

Electricity 731 n

70 kWh, φ = 3.29
80 kWh, φ = 4.49
90 kWh, φ = 8.43

!q = 1

Table: Data description. m is the max number of correlated records and n the total amount.
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(c) Galton, n = 897 m = 3

� 	 
 � �� �� �	 �
 �� ��

!

��
�

��
�

 

��������
���������

���������
����

��������

(d) FamilyIQ, n = 868, m = 2.
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(e) SyntheticIQ, n = 20000, m = 2.

Figure: Gaussian data results. Lines show theoretical error at ϑ = 5% and markers indicate empirical 95% upper bounds.
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Multivariate GaussianMore Results


