

Balancing Privacy and Utility in Correlated Data: A Study of Bayesian Differential Privacy

VLDB, September 2nd, 2025
Martin Lange, Patricia Guerra-Balboa, Javier Parra-Arnau, Thorsten Strufe

PRIVACY
AND SECURITY

Motivation

Differential Privacy fails to measure privacy leakage under correlation

Empirically confirmed

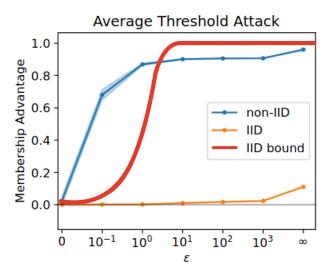


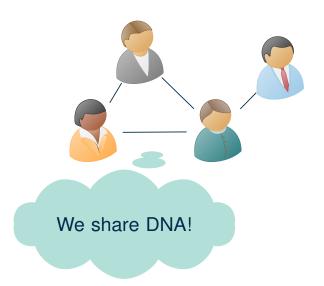
Figure: Humphries et al. 2023 MIA attack breaks DP guarantees.

Motivation

Differential Privacy fails to measure privacy leakage under correlation

Empirically confirmed

Dependencies among data records are present in most of real world scenarios.

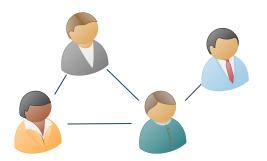


Motivation

Differential Privacy fails to measure privacy leakage under correlation

Empirically confirmed

Dependencies among data records are present in most of real world scenarios.

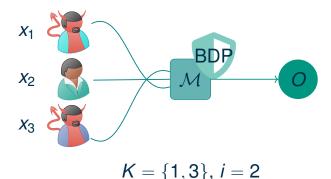


New enhanced notion: Bayesian Differential **Privacy**

Bayesian Differential Privacy (BDP)

Bayesian DP leakage

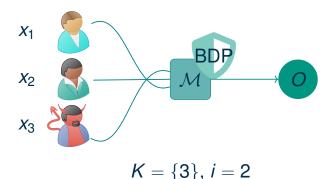
$$\mathrm{BDPL}_{(K,i)} = \sup_{x_i, x_i', \mathbf{x}_K, \mathcal{S}} \ln \frac{\Pr_{\mathcal{M}}[Y \in \mathcal{S} \mid \mathbf{X}_K = \mathbf{x}_K, X_i = x_i]}{\Pr_{\mathcal{M}}[Y \in \mathcal{S} \mid \mathbf{X}_K = \mathbf{x}_K, X_i = x_i']}, \text{ then } \varepsilon = \sup_{K, i} \mathrm{BDPL}_{(K, i)}.$$



Bayesian Differential Privacy (BDP)

Bayesian DP leakage

$$\mathrm{BDPL}_{(K,i)} = \sup_{x_i, x_i', \mathbf{x}_K, \mathcal{S}} \ln \frac{\Pr_{\mathcal{M}}[Y \in \mathcal{S} \mid \mathbf{X}_K = \mathbf{x}_K, X_i = x_i]}{\Pr_{\mathcal{M}}[Y \in \mathcal{S} \mid \mathbf{X}_K = \mathbf{x}_K, X_i = x_i']}, \text{ then } \varepsilon = \sup_{K, i} \mathrm{BDPL}_{(K, i)}.$$



Bayesian Differential Privacy (BDP)

Bayesian DP leakage

$$BDPL_{(K,i)} = \sup_{x_i, x_i', \mathbf{x}_K, S} \ln \frac{Pr_{\mathcal{M}}[Y \in S \mid \mathbf{X}_K = \mathbf{x}_K, X_i = x_i]}{Pr_{\mathcal{M}}[Y \in S \mid \mathbf{X}_K = \mathbf{x}_K, X_i = x_i']}, \text{ then } \varepsilon = \sup_{K, i} BDPL_{(K,i)}.$$

.Privacy_____

- Effective measure and resistance to correlation-based attacks.
- ✓ Instance of Pufferfish framework.
- Good properties: post-processing & composition.

Utility

- ➤ Computationally intractable methods (computing the Wasserstein distance).
- ➤ Poor utility (methods based on group privacy).
- ★ Limited applicability (lazy, binary, stationary Markov chains).

Our Research Question

Can we reduce utility loss while still retaining the privacy guarantees of BDP?

Our methodology: Understanding how DP leakage relates to BDP leakage:

 ε -DP \Rightarrow ??-BDP.

Against arbitrary correlations it is impossible

Kifer and Machanavajjhala 2014: Pufferfish (including BDP) ∧ ⇒ Free-lunch Privacy ⇒ No utility. arbitrary correlation

We express this in term of (α, β) -accuracy: $0 \le \beta < \frac{1}{e^{\epsilon}+1}$ and any target query f, then $\alpha > \frac{1}{2} \max_{D,D'} |f(D) - f(D')|$.

```
1 - \beta = Confidence \alpha = Error, interval radius with confidence 1 - \beta.
```

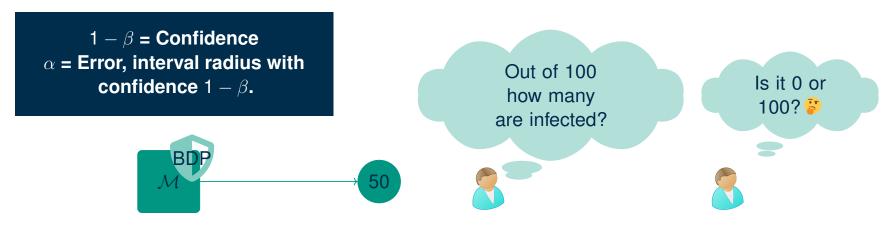
Against arbitrary correlations it is impossible

We express this in term of (α, β) -accuracy: $0 \le \beta < \frac{1}{e^{\epsilon}+1}$ and any target query f, then $\alpha > \frac{1}{2} \max_{D,D'} |f(D) - f(D')|$.

Against arbitrary correlations it is impossible

Kifer and Machanavajjhala 2014: $\begin{array}{ccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & & \\ & \\ & \\ & \\ &$

We express this in term of (α, β) -accuracy: $0 \le \beta < \frac{1}{e^{\varepsilon}+1}$ and any target query f, then $\alpha > \frac{1}{2} \max_{D,D'} |f(D) - f(D')|$.



Few Correlated Records, Same Disaster

Our result (informal)

Privacy decreases linearly proportional to number of correlated records:

$$\varepsilon$$
-DP $\Rightarrow m\varepsilon$ -BDP

How does it impact utility?

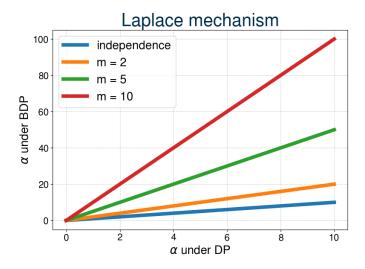


Figure: For the same confidence level, the upper bound on the query error α increases sharply.

Few Correlated Records, Same Disaster

Our result (informal)

Privacy decreases linearly proportional to number of correlated records:

$$\varepsilon$$
-DP $\Rightarrow m\varepsilon$ -BDP

This result is tight! Even if $\rho \to 0$.

How does it impact utility?

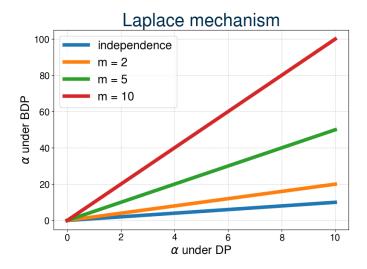


Figure: For the same confidence level, the upper bound on the query error α increases sharply.

Few Correlated Records, Same Disaster

Our result (informal)

Privacy decreases linearly proportional to number of correlated records:

$$\varepsilon$$
-DP $\Rightarrow m\varepsilon$ -BDP

This result is tight! Even if $\rho \to 0$.

Conclusion:

We need to target specific correlation models π to obtain utility

How does it impact utility?

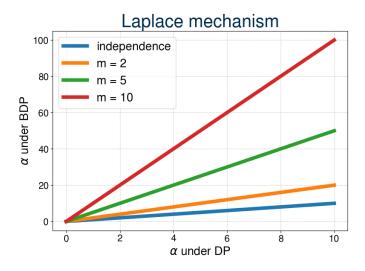


Figure: For the same confidence level, the upper bound on the query error α increases sharply.

New strategy

Our goal

Adjust the noise of DP mechanisms to obtain useful BDP mechanisms.

Assumption: The attacker does not have more knowledge about π than the data curator.

New strategy

Our goal

Adjust the noise of DP mechanisms to obtain useful BDP mechanisms.

Assumption: The attacker does not have more knowledge about π than the data curator.

Multivariate Gaussian

Markov Chains

Multivariate Gaussian Correlation (Theoretical Results)

Main Result (Informal)

- Let \mathcal{M} be an $\varepsilon \ell_1$ -private mechanism,
- input data drawn from a multivariate Gaussian distribution
- Arr $\rho(m-2)$ < 1 is the maximum correlation coefficient.

Then, using clipping as preprocessing step, $c_l(D)_i = \max(a, \min(b, D_i))$, we obtain \mathcal{M}_l satisfying

$$\mathrm{BDPL}(\mathcal{M}_I) \leq \left(\frac{m^2}{4(\frac{1}{\rho}-m+2)} + 1 \right) M \varepsilon.$$

where M is the diameter of the interval I = [a, b]

Multivariate Gaussian Correlation (Theoretical Results)

Main Result (Informal)

- Let \mathcal{M} be an $\varepsilon \ell_1$ -private mechanism,
- input data drawn from a multivariate Gaussian distribution
- Arr $\rho(m-2)$ < 1 is the maximum correlation coefficient.

Then, using clipping as preprocessing step, $c_I(D)_i = \max(a, \min(b, D_i))$, we obtain \mathcal{M}_I satisfying

$$\mathrm{BDPL}(\mathcal{M}_I) \leq \left(\frac{m^2}{4(\frac{1}{\rho}-m+2)} + 1 \right) M \varepsilon.$$

where M is the diameter of the interval I = [a, b]

- $\mathcal{M} \varepsilon \ell_1 \Rightarrow \mathcal{M}_I$ is $M\varepsilon$ -DP.
- Using clipping as preprocessing step is a common technique to bound the sensitivity of DP queries.

Multivariate Gaussian Correlation (Impact on Real Databases)

- Theoretical Utility Metric: (α, β) -accuracy, i.e., $\Pr[|q(D) \mathcal{M}(q(D))| \ge \alpha] \le \beta$. Specifically, $\beta = 0.05$, i.e., 95% confidence interval.
- \times **Empirical Utility Metric:** The upper bound of a (1β) confidence interval for the absolute query error.

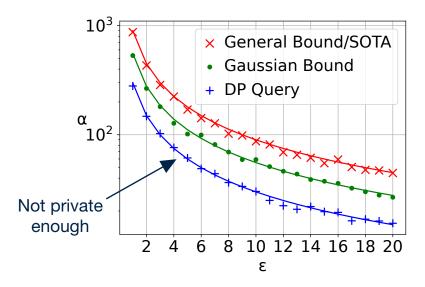


Figure: Galton, n = 897 m = 3

- From our theorems: Noise recalibration of the Laplace mechanism ⇒ BDP.
- Substantial utility gains compared to the standard bound.
- More experiments with different real and synthetic datasets in our paper show similar results.

Markov Chain Correlation Model (Theoretical Results)

Main result (Informal)

- Let \mathcal{M} be an ε -DP mechanism,
- input data sampled form Markov chain with transition matrix $P \in \mathbb{R}^{s \times s}$ and initial distribution $w \in \mathbb{R}^{s}$ with the following properties:

(H1) For all
$$x, y \in \mathcal{S}$$
 we have $P_{x,y} > 0$ and, (H2) $wP = w$.

Then,
$$\mathcal{M}$$
 is an $(\varepsilon + 4 \ln \gamma)$ -BDP mechanism where $\gamma = \frac{\max_{x,y \in \mathcal{S}} P_{xy}}{\min_{x,y \in \mathcal{S}} P_{xy}}$.

Markov Chain Correlation Model (Theoretical Results)

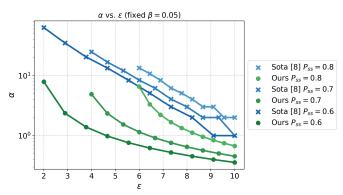
Main result (Informal)

- Let \mathcal{M} be an ε -DP mechanism,
- input data sampled form Markov chain with transition matrix $P \in \mathbb{R}^{s \times s}$ and initial distribution $w \in \mathbb{R}^{s}$ with the following properties:

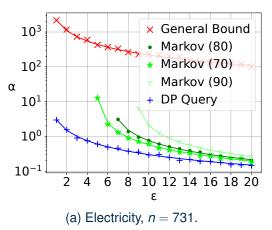
(H1) For all
$$x, y \in S$$
 we have $P_{x,y} > 0$ and, (H2) $wP = w$.

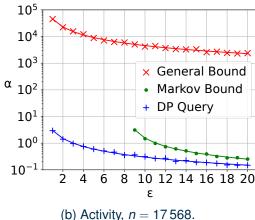
Then,
$$\mathcal{M}$$
 is an $(\varepsilon + 4 \ln \gamma)$ -BDP mechanism where $\gamma = \frac{\max_{x,y \in \mathcal{S}} P_{xy}}{\min_{x,y \in \mathcal{S}} P_{xy}}$.

Previous mechanism	Ours
$P_{xy} > 0$	$P_{xy} > 0$
stationary	stationary
lazy	
binary	
symmetric	
$arepsilon' > {f 0}$	$arepsilon' > 4 \ln(\gamma)$



Markov Chain Correlation Model (Impact on Real Databases)





- From our theorems: Noise recalibration of the Laplace mechanism ⇒ BDP.
- Substantial utility gains compared to the standard bound.
- Markov bound independent of n
 ⇒ huge improvement for large datasets.

■ We provide a close and computationally feasible method to generate a BDP mechanism by recalibrating existing DP methods.

- We provide a close and computationally feasible method to generate a BDP mechanism by recalibrating existing DP methods.
- Our new bounds, tailored to Gaussian and Markov models, offer significantly better utility than prior results.

- We provide a close and computationally feasible method to generate a BDP mechanism by recalibrating existing DP methods.
- Our new bounds, tailored to Gaussian and Markov models, offer significantly better utility than prior results.

Key takeaway:

BDP becomes practical and more accurate when correlations are structured, e.g., small groups, weak Gaussian correlations, or time-series data.

- We provide a close and computationally feasible method to generate a BDP mechanism by recalibrating existing DP methods.
- Our new bounds, tailored to Gaussian and Markov models, offer significantly better utility than prior results.

Key takeaway:

BDP becomes practical and more accurate when correlations are structured, e.g., small groups, weak Gaussian correlations, or time-series data.

■ This enables safe reuse of DP mechanisms in real-world. correlated scenarios without weakening privacy guarantees.

Paper

Code

Backup Slides

Experiment Details

Database	n	m	Parameters	Sensitivity
Galton	897	3	$\rho = 0.275$	$\Delta q = 254$ cm
FamilyIQ	868	2	$\rho = 0.4483$	$\Delta q = 120$
SyntheticIQ	20000	2	$\rho = 0.45$	$\Delta q = 120$
Activity	17568	n	$\gamma = 7.54$	$\Delta q = 1$
Activity Single Day	288	n	$\gamma = 7.54$	$\Delta q = 1$
Electricity	731	n	70 kWh, $\gamma = 3.29$ 80 kWh, $\gamma = 4.49$ 90 kWh, $\gamma = 8.43$	$\Delta q = 1$

Table: Data description. m is the max number of correlated records and n the total amount.

Multivariate Gaussian More Results

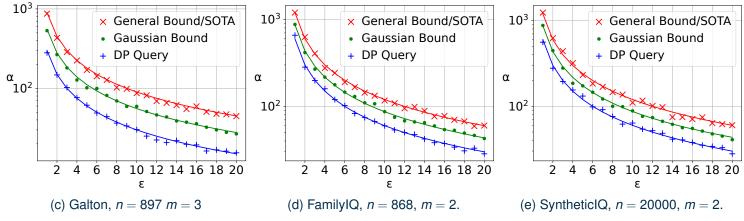


Figure: Gaussian data results. Lines show theoretical error at $\beta = 5\%$ and markers indicate empirical 95% upper bounds.