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individual’s privacy
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Learn population-level information without harming
individual’s privacy

!
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!

Privacy Goal: Protect Alice’s
location

Utility Goal: Number of cars per
street
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Learn population-level information without harming
individual’s privacy

!

!

!

Greater height is associated
with lower blood pressure!

Privacy Goal: Protect Alice’s
activity data

Utility Goal: Correlation
between height and health
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Idea: We want to bound participation risk.

M"DP
ω M"DP

ω

pM(ω | x1, . . . , xn→1, xn)

pM(ω | x1, . . . , xn→1, yn)
↑ eε

“Strongest” assumption: everybody’s record is known but the target.
The privacy leakage ε controls the indistinguishability level between xn, yn.
But at some cost! The smaller the ε the less utility.
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Composition

Post-processing Attack Mitigation

M1

M2

M3

ω1

ω2

ω3

ω s
M A

A ↓M

M ε-DP ↔ Adv ↑ f (ε)
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WhyDP Is The Best So Far?
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H0 : xn

M"DP
ω

H1 : yn

M"DP
ω

D→ is known:

H0 = Dxn
Vs. H1 = Dyn

Type I error:
ϑ = PrA↓M(yn | Dxn

)
Type II error:

ϖ = 1 → PrA↓M(yn | Dyn
)

A ↓M is ε-DP 1 → ϖ ↑ eεϑ

ϑ ↑ eε(1 → ϖ)
ϖ ↗ max{1→eεϑ, eε(1→ϑ)}

5/21 Patricia Guerra-Balboa: Balancing Privacy and Utility in Correlated Data KASTEL – Privacy and Security

Membership Inference Attack KnowingD→
The attacker receives ω and aims to distinguish between:
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M"DP
ω

Statistical Independence
The strongest attacker is the worst-case one, and we
have at least the same protection.

Dependencies between
Records

DP interpretation does not hold anymore.
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What about other attackermodels?
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M"DP
ω

We share DNA!
so, our height
is correlated!

Statistical Independence
The strongest attacker is the worst-case one, and we
have at least the same protection.

Dependencies between
Records

DP interpretation does not hold anymore.
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D→ is unknown:

H0 = {D : xn ↘ D} Vs. H1 = {D : yn ↘ D}

Type I error:

ϑ = Pr
A↓M

(yn | xn)

=
∑

D→

Pr
A↓M

(yn | Dxn
) ϱ(D→ | xn)

Type II error:

ϖ = 1 → Pr
A↓M

(yn | yn)

= 1 →
∑

D→

Pr
A↓M

(yn | Dyn
) ϱ(D→ | yn)

A ↓M is ε-DP 1→ϖ ↑
∑

D→

eε Pr
A↓M

(yn | Dxn
)ϱ(D→ | yn) = eε

∑

D→

Pr
A↓M

(yn | Dxn
)ϱ(D→ | yn) ≃= eεϑ
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Membership Inference AttackWith Dependencies
The attacker receives ω and aims to distinguish between:




















































H0 : xn

M"DP
ω

H1 : yn

M"DP
ω

D→ is unknown:

H0 = {D : xn ↘ D} Vs. H1 = {D : yn ↘ D}

Type I error:

ϑ = Pr
A↓M

(yn | xn)

=
∑

D→

Pr
A↓M

(yn | Dxn
) ϱ(D→ | xn)

Type II error:

ϖ = 1 → Pr
A↓M

(yn | yn)

= 1 →
∑

D→

Pr
A↓M

(yn | Dyn
) ϱ(D→ | yn)

A ↓M is ε-DP 1→ϖ ↑
∑

D→

eε Pr
A↓M

(yn | Dxn
)ϱ(D→ | yn) = eε

∑

D→

Pr
A↓M

(yn | Dxn
)ϱ(D→ | yn) ≃= eεϑ

7/21 Patricia Guerra-Balboa: Balancing Privacy and Utility in Correlated Data KASTEL – Privacy and Security

Membership Inference AttackWith Dependencies
The attacker receives ω and aims to distinguish between:




















































H0 : xn

M"DP
ω

H1 : yn

M"DP
ω

D→ is unknown:

H0 = {D : xn ↘ D} Vs. H1 = {D : yn ↘ D}

Type I error:

ϑ = Pr
A↓M

(yn | xn)

=
∑

D→

Pr
A↓M

(yn | Dxn
) ϱ(D→ | xn)

Type II error:

ϖ = 1 → Pr
A↓M

(yn | yn)

= 1 →
∑

D→

Pr
A↓M

(yn | Dyn
) ϱ(D→ | yn)

A ↓M is ε-DP 1→ϖ ↑
∑

D→

eε Pr
A↓M

(yn | Dxn
)ϱ(D→ | yn) = eε

∑

D→

Pr
A↓M

(yn | Dxn
)ϱ(D→ | yn) ≃= eεϑ

7/21 Patricia Guerra-Balboa: Balancing Privacy and Utility in Correlated Data KASTEL – Privacy and Security

Membership Inference AttackWith Dependencies
The attacker receives ω and aims to distinguish between:




















































H0 : xn

M"DP
ω

H1 : yn

M"DP
ω

D→ is unknown:

H0 = {D : xn ↘ D} Vs. H1 = {D : yn ↘ D}

Type I error:

ϑ = Pr
A↓M

(yn | xn)

=
∑

D→

Pr
A↓M

(yn | Dxn
) ϱ(D→ | xn)

Type II error:

ϖ = 1 → Pr
A↓M

(yn | yn)

= 1 →
∑

D→

Pr
A↓M

(yn | Dyn
) ϱ(D→ | yn)

A ↓M is ε-DP 1→ϖ ↑
∑

D→

eε Pr
A↓M

(yn | Dxn
)ϱ(D→ | yn) = eε

∑

D→

Pr
A↓M

(yn | Dxn
)ϱ(D→ | yn) ≃= eεϑ

7/21 Patricia Guerra-Balboa: Balancing Privacy and Utility in Correlated Data KASTEL – Privacy and Security

Membership Inference AttackWith Dependencies
The attacker receives ω and aims to distinguish between:




















































H0 : xn

M"DP
ω

H1 : yn

M"DP
ω

D→ is unknown:

H0 = {D : xn ↘ D} Vs. H1 = {D : yn ↘ D}

Type I error:

ϑ = Pr
A↓M

(yn | xn)

=
∑

D→

Pr
A↓M

(yn | Dxn
) ϱ(D→ | xn)

Type II error:

ϖ = 1 → Pr
A↓M

(yn | yn)

= 1 →
∑

D→

Pr
A↓M

(yn | Dyn
) ϱ(D→ | yn)

A ↓M is ε-DP 1→ϖ ↑
∑

D→

eε Pr
A↓M

(yn | Dxn
)ϱ(D→ | yn) = eε

∑

D→

Pr
A↓M

(yn | Dxn
)ϱ(D→ | yn) ≃= eεϑ

7/21 Patricia Guerra-Balboa: Balancing Privacy and Utility in Correlated Data KASTEL – Privacy and Security

Membership Inference AttackWith Dependencies
The attacker receives ω and aims to distinguish between:




















































Differential Privacy fails to measure privacy leakage under correlation

! Empirically confirmed " # Theoretically exposed

Figure: Humphries et al. 2023 MIA breaks DP guarantees.
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Standard DP Underestimates Participation Risk



















































Differential Privacy fails to measure privacy leakage under correlation

! Empirically confirmed " # Theoretically exposed

Figure: Humphries et al. 2023 MIA breaks DP guarantees.

New enhanced notion: Bayesian Differential
Privacy
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Standard DP Underestimates Participation Risk



















































M"BDP
x2

x1

x3

ω

K = {1, 3}, i = 2
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Proposed Solution: Bayesian Differential Privacy
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x2
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x3

ω

K = {3}, i = 2
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Proposed Solution: Bayesian Differential Privacy



















































Bayesian DP leakage (Yang et al. 2017)

BDPL(K ,i) = sup
xi ,x

⇐
i
,xK ,S

ln
PrM[Y ↘ S | XK = xK ,Xi = xi ]

PrM[Y ↘ S | XK = xK ,Xi = x ⇐
i
]
, then ε = sup

K ,i
BDPL(K ,i).

M"BDP
x2

x1

x3

ω
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Privacy Utility

# Effective measure and resistance to
correlation-based attacks.

# Good properties: post-processing &
composition.

While other correlation-aware notions (General Pufferfish
framework) don’t!

! Poor utility (methods based on group privacy).
! Computationally intractable methods

(computing the Wasserstein distance).
! Limited applicability (lazy, binary, stationary

Markov chains).
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Proposed Solution: Bayesian Differential Privacy



















































Can we reduce utility loss while still retaining the
privacy guarantees of BDP?

Our methodology: Understanding how DP leakage
relates to BDP leakage:

ε-DP ↔ ??-BDP.
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Our Research Question



















































Kifer and Machanavajjhala 2014:

Pufferfish (including BDP)

&

arbitrary correlation

↔ Free-lunch Privacy ↔ No utility.

We express this in term of (ϑ, ϖ)-accuracy for any numerical target query f :

(ϑ, ϖ)-accuracy

Pr(|f (D)→M(D)| ↗ ϑ) ↑ ϖ

1 → ϖ = confidence
ϑ = error interval

Our result (informal):

ϖ < 1
eω+1 ↔ ϑ > 1

2Range(f ).

M"BDP
50

Out of 100
how many

are infected?

Is it 0 or
100?
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Against Arbitrary Correlations It Is Impossible
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Our result (informal)

Privacy decreases linearly proportional to number
of correlated records:

ε-DP ↔ mε-BDP

This result is tight! Even if ς ⇒ 0.

Conclusion:

We need to target specific correlation models ϱ to
obtain utility

How does it impact utility?

Figure: For the same confidence level, the upper bound on the query
error ϑ increases sharply.
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Adjust the noise of DP mechanisms to obtain useful BDP
mechanisms targeting specific priors ϱ.

Assumptions:
Global setting: All data is collected by a trusted data curator
that applies the mechanism.
The attacker does not have more knowledge about ϱ than the
data curator.

M"BDP
ω

Multivariate Gaussian Markov Chains
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Main Result (Informal)

Let M be an εφ1-private mechanism,

input data drawn from a multivariate Gaussian distribution
ς(m → 2) < 1 is the maximum correlation coefficient.

Then, using clipping as preprocessing step, cI(D)i = max(a,min(b,Di)),
we obtain MI satisfying

BDPL(MI) ↑
(

m2

4(1
ς → m + 2)

+ 1

)
Mε.

where M is the diameter of the interval I = [a, b]
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Use-case: Sum queries with Laplace mechanism. ω = f (D) + Z with Z ⇑ Lap(b).

Strategy: We calibrate b to obtain BDP using our theorem.
Utility metric: We set ϖ = 0.05 (i.e., 95% confidence) and measure (ϑ, ϖ)-accuracy, both
theoretically (→) and empirically (⇓).

Figure: Galton, n = 897 m = 3

Key takeway:
Substantial utility gains compared to the

general bound!

More experiments with different real and
synthetic datasets in our paper show similar
results.
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Main result (Informal)

Let M be an ε-DP mechanism,
input data sampled form Markov chain with transition matrix P ↘ Rs⇓s and initial distribution w ↘ Rs with
the following properties:

(H1) For all x , y ↘ S we have Px ,y > 0 and, (H2) wP = w .

Then, M is an (ε + 4 ln ↼)-BDP mechanism where ↼ =
maxx ,y↘S Pxy

minx ,y↘S Pxy
.

Previous mechanism Ours

Pxy > 0 Pxy > 0
stationary stationary

lazy
binary

symmetric
ε⇐ > 0 ε⇐ > 4 ln(↼)
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Use-case: Counting queries with Laplace mechanism. ω = f (D) + Z with Z ⇑ Lap(b).

Strategy: We calibrate b to obtain BDP using our theorem.
Utility metric: We set ϖ = 0.05 (i.e., 95% confidence) and measure →(ϑ, ϖ)-accuracy, ⇓ upper
bound of a (1 → ϖ) confidence interval for the absolute query error.

(a) Electricity, n = 731. (b) Activity, n = 17 568.

Key takeway:
Substantial utility
gains compared to the
general bound!
Markov bound
independent of n

↔ huge improvement
for large datasets.
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(g) Electricity, n = 731.
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(h) Activity, n = 17 568.

Key takeway:
Substantial utility
gains compared to the
general bound!
Markov bound
independent of n

↔ huge improvement
for large datasets.
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# We provide a feasible method to generate a BDP
mechanism by recalibrating existing DP methods, tailored to
Gaussian and Markov models.

# We offer significantly better utility than prior results.

Key takeway:
BDP becomes usable when correlations are structured.

Future Work:
Other distributions ?

Can we build methods from scratch instead or recycling ?

What if we calibrate directly to the attack advantage ?

Paper

Code
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Database n m Parameters Sensitivity
Galton 897 3 ς = 0.275 !q = 254cm

FamilyIQ 868 2 ς = 0.4483 !q = 120
SyntheticIQ 20000 2 ς = 0.45 !q = 120
Activity 17568 n ↼ = 7.54 !q = 1
Activity Single Day 288 n ↼ = 7.54 !q = 1

Electricity 731 n

70 kWh, ↼ = 3.29
80 kWh, ↼ = 4.49
90 kWh, ↼ = 8.43

!q = 1

Table: Data description. m is the max number of correlated records and n the total amount.
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(i) Galton, n = 897 m = 3
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(j) FamilyIQ, n = 868, m = 2.
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(k) SyntheticIQ, n = 20000, m = 2.

Figure: Gaussian data results. Lines show theoretical error at ϖ = 5% and markers indicate empirical 95% upper bounds.
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Multivariate GaussianMore Results


